\qquad
MATH 251/253 (circle one)
Sections 508/201/202(circle one)
Exam 1 Fall 2014
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-14$	$/ 70$
15	$/ 10$
16	$/ 10$
17	$/ 10$
Total	$/ 100$

1. The vertices of a triangle are $A=(2,1, \sqrt{2}), B=(3,2,2 \sqrt{2})$ and $C=(4,3, \sqrt{2})$.

Find the angle at A.
a. 30°
b. 45°
c. 60°
d. 120°
e. 135°
2. The vertices of a triangle are $A=(2,1, \sqrt{2}), B=(3,2,2 \sqrt{2})$ and $C=(4,3, \sqrt{2})$. Find a vector perpendicular to the plane of this triangle.
a. $(1,-1,0)$
b. $(1,1,0)$
c. $(1,-1,1)$
d. $(1,1,1)$
e. $(-1,-1,1)$
3. Which of the following points lies on the line $(x, y, z)=(2-t, 3+2 t, 4+t)$ and on the plane $2 x+3 y+4 z=21$?
a. $(1,1,1)$
b. $(4,3,2)$
c. $(2,3,2)$
d. $(3,1,3)$
e. $(2,2,2)$
4. The quadratic surface $x^{2}-y^{2}-6 x+4 y+2=0$ is a
a. hyperboloid
b. hyperbolic ellipsoid
c. hyperbola
d. hyperboic paraboloid
e. hyperbolic cylinder
5. For the "twisted cubic" curve $\vec{r}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$, find the binormal vector \hat{B}.
a. $\left(\frac{2 t^{2}}{2 t^{2}+1}, \frac{-2 t}{2 t^{2}+1}, \frac{1}{2 t^{2}+1}\right)$
b. $\left(\frac{1}{2 t^{2}+1}, \frac{2 t}{2 t^{2}+1}, \frac{2 t^{2}}{2 t^{2}+1}\right)$
c. $\left(\frac{-2 t^{2}}{2 t^{2}+1}, \frac{2 t}{2 t^{2}+1}, \frac{-1}{2 t^{2}+1}\right)$
d. $\left(\frac{1}{2 t^{2}+1}, \frac{-2 t}{2 t^{2}+1}, \frac{2 t^{2}}{2 t^{2}+1}\right)$
e. $\left(\frac{2 t^{2}}{2 t^{2}+1}, \frac{2 t}{2 t^{2}+1}, \frac{1}{2 t^{2}+1}\right)$
6. Find the mass of the "twisted cubic" curve $\vec{r}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$ between $t=0$ and $t=1$ if the linear density is $\rho=y^{2}+6 x z$.
a. 1
b. $\frac{1}{5}$
c. $\frac{7}{5}$
d. $\frac{20}{7}$
e. $\frac{17}{7}$
7. Find the work done when a bead is pushed along the "twisted cubic" curve $\vec{r}(t)=\left(t, t^{2}, \frac{2}{3} t^{3}\right)$ between $t=0$ and $t=1$ if you apply the force $\vec{F}=(3 z, y, x)$.
a. $\frac{1}{2}$
b. 1
c. $\frac{3}{2}$
d. 2
e. $\frac{5}{2}$
8. You are riding on a train which is currently travelling EAST but curving toward the SOUTH. Where do \hat{B} and \hat{N} for the train currently point?
a. \hat{B} points SOUTH and \hat{N} points DOWN.
b. \hat{B} points SOUTH and \hat{N} points UP.
c. \hat{B} points UP and \hat{N} points SOUTH.
d. \hat{B} points DOWN and \hat{N} points SOUTH.
e. \hat{B} points DOWN and \hat{N} points SOUTHEAST.
9. For the function $f=x \sin (y z)$, which of the following are correct?
I. $\frac{\partial^{2} f}{\partial x \partial y}=-z \cos y z \quad$ III. $\quad \frac{\partial^{2} f}{\partial x \partial z}=y \cos y z \quad$ V. $\quad \frac{\partial^{2} f}{\partial y \partial z}=x \cos y z-x y z \sin y z$
II. $\frac{\partial^{2} f}{\partial y \partial x}=z \cos y z$
IV. $\frac{\partial^{2} f}{\partial z \partial x}=y \cos y z$
VI. $\frac{\partial^{2} f}{\partial z \partial y}=x \cos y z+x y z \sin y z$
a. I and II.
b. III and IV.
c. V and VI.
d. I, II and III.
e. IV, V and VI.
10. Find the equation of the plane tangent to the graph of the function $z=f(x, y)=x^{2} y+x y^{3}$ at $(x, y)=(2,1)$. What is the z-intercept?
a. -14
b. -6
c. 6
d. 14
e. 26
11. Find the equation of the plane tangent to the graph of the equation $x \sin (y z)=1$ at $P=\left(\sqrt{2}, \frac{1}{4}, \pi\right)$. What is the z-intercept?
a. $\sqrt{2}+\frac{\pi}{4}$
b. $1+\frac{\pi}{2}$
c. $2+\pi$
d. $4+2 \pi$
e. $2 \sqrt{2}+2 \pi$
12. A fish is currently at the point $(x, y, z)=(1,2,-3)$ and has velocity $\vec{v}=(1,2,1)$.

If the salt density is $D=x y z^{2}$, find $\frac{d D}{d t}$, the time rate of change of the density as seen by the fish at the current instant.
a. 12
b. 24
c. 36
d. 48
e. 60
13. The equation $z^{3} \sin x+z \cos y=3$ defines z as an implicit function of x and y. Notice that its graph passes through the point $\left(\frac{\pi}{4}, \frac{\pi}{4}, \sqrt{2}\right)$. Find $\frac{\partial z}{\partial y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$.
a. $\frac{\sqrt{2}}{5}$
b. $\frac{\sqrt{2}}{6}$
c. $\frac{\sqrt{2}}{7}$
d. $\frac{1}{6}$
e. $\frac{1}{7}$
14. The plot at the right is the contour plot of which of these functions?
a. $f(x, y)=\sin (x) \sin (y)$
b. $f(x, y)=x^{2}-y^{2}$
c. $f(x, y)=\sin \left(\sqrt{x^{2}+y^{2}}\right)$
d. $f(x, y)=\sin (x)+\sin (y)$
e. $f(x, y)=\sin (x y)$

15. The pressure P, the temperature T, and the density ρ, of a certain ideal gas are related by $P=10^{-3} \rho T$. Currently, the temperature is $T=300^{\circ} \mathrm{K}$ and is increasing at $2^{\circ} \mathrm{K}$ per minute while the density is $\rho=4 \frac{\mathrm{gm}}{\mathrm{cm}^{3}}$ and is decreasing at $0.05 \frac{\mathrm{gm}}{\mathrm{cm}^{3}}$ per minute. Consequently, the pressure is currently $P=10^{-3} \rho T=10^{-3}(4)(300)=1.2 \mathrm{~atm}$. At what rate is P changing and is it increasing or decreasing?
16. The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. If the radius and height are measured to be $r=3 \mathrm{~cm} \pm 0.02 \mathrm{~cm}$ and $h=5 \mathrm{~cm} \pm 0.03 \mathrm{~cm}$, then the volume is computed to be $V=\frac{1}{3} \pi 3^{2} 5=15 \pi \mathrm{~cm}^{3}$. Use differentials to estimate the error in this computed volume.
17. Find the minimum value of the function $f=x^{2}+2 y^{2}+4 z^{2}$ on the plane $x+y+z=14$.

