Name	1-14	/70
MATH 251/253 (circle one) Exam 1 Fall 2014	15	/10
Sections 508/201/202(circle one) P. Yasskin	16	/10
Multiple Choice: (5 points each. No part credit.)	17	/10
	Total	/100

- **1**. The vertices of a triangle are $A = (2, 1, \sqrt{2})$, $B = (3, 2, 2\sqrt{2})$ and $C = (4, 3, \sqrt{2})$. Find the angle at A.
 - **a**. 30°
 - **b**. 45°
 - **c**. 60°
 - **d**. 120°
 - **e**. 135°

- **2**. The vertices of a triangle are $A = (2, 1, \sqrt{2})$, $B = (3, 2, 2\sqrt{2})$ and $C = (4, 3, \sqrt{2})$. Find a vector perpendicular to the plane of this triangle.
 - **a**. (1,-1,0)
 - **b**. (1,1,0)
 - **c**. (1,-1,1)
 - **d**. (1,1,1)
 - **e**. (-1, -1, 1)

- **3**. Which of the following points lies on the line (x, y, z) = (2 t, 3 + 2t, 4 + t) and on the plane 2x + 3y + 4z = 21?
 - **a**. (1,1,1)
 - **b**. (4,3,2)
 - **c**. (2,3,2)
 - **d**. (3, 1, 3)
 - **e**. (2,2,2)

- 4. The quadratic surface $x^2 y^2 6x + 4y + 2 = 0$ is a
 - a. hyperboloid
 - b. hyperbolic ellipsoid
 - c. hyperbola
 - d. hyperboic paraboloid
 - e. hyperbolic cylinder
- **5**. For the "twisted cubic" curve $\vec{r}(t) = (t, t^2, \frac{2}{3}t^3)$, find the binormal vector \hat{B} .

a.
$$\left(\frac{2t^2}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{1}{2t^2+1}\right)$$

b. $\left(\frac{1}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{2t^2}{2t^2+1}\right)$
c. $\left(\frac{-2t^2}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{-1}{2t^2+1}\right)$
d. $\left(\frac{1}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{2t^2}{2t^2+1}\right)$
e. $\left(\frac{2t^2}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{1}{2t^2+1}\right)$

6. Find the mass of the "twisted cubic" curve $\vec{r}(t) = (t, t^2, \frac{2}{3}t^3)$ between t = 0 and t = 1if the linear density is $\rho = y^2 + 6xz$.

a. 1 **b.** $\frac{1}{5}$ **c.** $\frac{7}{5}$ **d.** $\frac{20}{7}$ **e.** $\frac{17}{7}$

- 7. Find the work done when a bead is pushed along the "twisted cubic" curve $\vec{r}(t) = \left(t, t^2, \frac{2}{3}t^3\right)$ between t = 0 and t = 1 if you apply the force $\vec{F} = (3z, y, x)$.
 - **a**. $\frac{1}{2}$ **b**. 1

 - **c**. $\frac{3}{2}$ **d**. 2

 - **e**. $\frac{5}{2}$

- 8. You are riding on a train which is currently travelling EAST but curving toward the SOUTH. Where do \hat{B} and \hat{N} for the train currently point?
 - **a**. \hat{B} points SOUTH and \hat{N} points DOWN.
 - **b**. \hat{B} points SOUTH and \hat{N} points UP.
 - **c**. \hat{B} points UP and \hat{N} points SOUTH.
 - d. \hat{B} points DOWN and \hat{N} points SOUTH.
 - e. \hat{B} points DOWN and \hat{N} points SOUTHEAST.

9. For the function $f = x \sin(yz)$, which of the following are correct?

I.
$$\frac{\partial^2 f}{\partial x \partial y} = -z \cos yz$$
 III. $\frac{\partial^2 f}{\partial x \partial z} = y \cos yz$ V. $\frac{\partial^2 f}{\partial y \partial z} = x \cos yz - xyz \sin yz$
II. $\frac{\partial^2 f}{\partial y \partial x} = z \cos yz$ IV. $\frac{\partial^2 f}{\partial z \partial x} = y \cos yz$ VI. $\frac{\partial^2 f}{\partial z \partial y} = x \cos yz + xyz \sin yz$

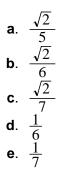
- a. I and II.
- **b**. III and IV.
- $\boldsymbol{c}.~V$ and VI.
- d. I, II and III.
- e. IV, V and VI.

10. Find the equation of the plane tangent to the graph of the function $z = f(x, y) = x^2y + xy^3$ at (x, y) = (2, 1). What is the *z*-intercept?

- **a**. -14
- **b**. -6
- **c**. 6
- **d**. 14
- **e**. 26

- **11**. Find the equation of the plane tangent to the graph of the equation $x \sin(yz) = 1$ at $P = \left(\sqrt{2}, \frac{1}{4}, \pi\right)$. What is the *z*-intercept?
 - **a.** $\sqrt{2} + \frac{\pi}{4}$ **b.** $1 + \frac{\pi}{2}$ **c.** $2 + \pi$ **d.** $4 + 2\pi$ **e.** $2\sqrt{2} + 2\pi$

- **12**. A fish is currently at the point (x, y, z) = (1, 2, -3) and has velocity $\vec{v} = (1, 2, 1)$. If the salt density is $D = xyz^2$, find $\frac{dD}{dt}$, the time rate of change of the density as seen by the fish at the current instant.
 - **a**. 12
 - **b**. 24
 - **c**. 36
 - **d**. 48
 - **e**. 60
- **13**. The equation $z^3 \sin x + z \cos y = 3$ defines z as an implicit function of x and y. Notice that its graph passes through the point $\left(\frac{\pi}{4}, \frac{\pi}{4}, \sqrt{2}\right)$. Find $\frac{\partial z}{\partial y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$.



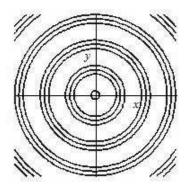
- 14. The plot at the right is the contour plot of which of these functions?
 - **a.** $f(x, y) = \sin(x)\sin(y)$

b.
$$f(x,y) = x^2 - y^2$$

c. $f(x,y) = \sin(\sqrt{x^2 + y^2})$

d. $f(x, y) = \sin(x) + \sin(y)$

$$e. \quad f(x,y) = \sin(xy)$$



15. The pressure *P*, the temperature *T*, and the density ρ , of a certain ideal gas are related by $P = 10^{-3}\rho T$. Currently, the temperature is $T = 300^{\circ}$ K and is increasing at 2° K per minute while the density is $\rho = 4 \frac{\text{gm}}{\text{cm}^3}$ and is decreasing at $0.05 \frac{\text{gm}}{\text{cm}^3}$ per minute. Consequently, the pressure is currently $P = 10^{-3}\rho T = 10^{-3}(4)(300) = 1.2$ atm. At what rate is *P* changing and is it increasing or decreasing?

16. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$. If the radius and height are measured to be $r = 3 \text{ cm} \pm 0.02 \text{ cm}$ and $h = 5 \text{ cm} \pm 0.03 \text{ cm}$, then the volume is computed to be $V = \frac{1}{3}\pi 3^2 5 = 15\pi \text{ cm}^3$. Use differentials to estimate the error in this computed volume.

17. Find the minimum value of the function $f = x^2 + 2y^2 + 4z^2$ on the plane x + y + z = 14.