Name	1-14	/70
MATH 251/253 (circle one) Exam 1 Fall 2014	15	/10
Sections 508/201/202(circle one) Solutions P. Yasskin	16	/10
Multiple Choice: (5 points each. No part credit.)	17	/10
	Total	/100

- **1**. The vertices of a triangle are $A = (2, 1, \sqrt{2})$, $B = (3, 2, 2\sqrt{2})$ and $C = (4, 3, \sqrt{2})$. Find the angle at A.
 - **a**. 30°
 - **b**. 45° Correct Choice
 - **c**. 60°
 - **d**. 120°
 - **e**. 135°

Solution:
$$\overrightarrow{AB} = B - A = (1, 1, \sqrt{2})$$
 $\overrightarrow{AC} = C - A = (2, 2, 0).$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 2 + 2 = 4$ $\left| \overrightarrow{AB} \right| = \sqrt{1 + 1 + 2} = 2$ $\left| \overrightarrow{AC} \right| = \sqrt{4 + 4} = 2\sqrt{2}$
 $\cos \alpha = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left| \overrightarrow{AB} \right| \left| \overrightarrow{AC} \right|} = \frac{4}{2 \cdot 2\sqrt{2}} = \frac{1}{\sqrt{2}}$ $\alpha = \arccos\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$

- **2**. The vertices of a triangle are $A = (2, 1, \sqrt{2})$, $B = (3, 2, 2\sqrt{2})$ and $C = (4, 3, \sqrt{2})$. Find a vector perpendicular to the plane of this triangle.
 - a. (1,-1,0) Correct Choice
 b. (1,1,0)
 c. (1,-1,1)
 d. (1,1,1)
 e. (-1,-1,1)

Solution:
$$\overrightarrow{AB} = (1, 1, \sqrt{2})$$
 $\overrightarrow{AC} = (2, 2, 0).$
 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & \sqrt{2} \\ 2 & 2 & 0 \end{vmatrix} = \hat{i} (0 - 2\sqrt{2}) - \hat{j} (0 - 2\sqrt{2}) + \hat{k}(0)$
 $= (-2\sqrt{2}, 2\sqrt{2}, 0) = -2\sqrt{2} (1, -1, 0)$

- **3**. Which of the following points lies on the line (x, y, z) = (2 t, 3 + 2t, 4 + t) and on the plane 2x + 3y + 4z = 21?
 - **a**. (1,1,1)
 - **b**. (4,3,2)
 - **c**. (2,3,2)
 - **d**. (3,1,3) Correct Choice
 - **e**. (2,2,2)

Solution: We are looking for the intersection. Plug the line into the plane: 2(2-t) + 3(3+2t) + 4(4+t) = 21 So 29 + 8t = 21 or 8t = -8 or t = -1. So the point of intersection is (x, y, z) = (2 + 1, 3 - 2, 4 - 1) = (3, 1, 3)

- 4. The quadratic surface $x^2 y^2 6x + 4y + 2 = 0$ is a
 - a. hyperboloid
 - b. hyperbolic ellipsoid
 - c. hyperbola
 - d. hyperboic paraboloid
 - e. hyperbolic cylinder Correct Choice

Solution: Since there are no *z*'s, this surface is a cylinder. Since the equation is a hyperbola in the *xy*-plane, this surface is a hyperbolic cylinder.

5. For the "twisted cubic" curve $\vec{r}(t) = (t, t^2, \frac{2}{3}t^3)$, find the binormal vector \hat{B} .

a.
$$\left(\frac{2t^2}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{1}{2t^2+1}\right)$$
 Correct Choice
b. $\left(\frac{1}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{2t^2}{2t^2+1}\right)$
c. $\left(\frac{-2t^2}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{-1}{2t^2+1}\right)$
d. $\left(\frac{1}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{2t^2}{2t^2+1}\right)$
e. $\left(\frac{2t^2}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{1}{2t^2+1}\right)$
Solution: $\vec{v} = (1, 2t, 2t^2)$ $\vec{a} = (0, 2, 4t)$

$$\vec{v} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2t & 2t^2 \\ 0 & 2 & 4t \end{vmatrix} = \hat{i}(8t^2 - 4t^2) - \hat{j}(4t - 0) + \hat{k}(2 - 0) = (4t^2, -4t, 2)$$
$$|\vec{v} \times \vec{a}| = \sqrt{16t^4 + 16t^2 + 4} = 4t^2 + 2 \qquad \hat{B} = \frac{\vec{v} \times \vec{a}}{|\vec{v} \times \vec{a}|} = \left(\frac{2t^2}{2t^2 + 1}, \frac{-2t}{2t^2 + 1}, \frac{1}{2t^2 + 1}\right)$$

- **6**. Find the mass of the "twisted cubic" curve $\vec{r}(t) = \left(t, t^2, \frac{2}{3}t^3\right)$ between t = 0 and t = 1 if the linear density is $\rho = y^2 + 6xz$.
 - **a.** 1 **b.** $\frac{1}{5}$ **c.** $\frac{7}{5}$ **d.** $\frac{20}{7}$ **e.** $\frac{17}{7}$ Correct Choice

Solution:
$$\rho = y^2 + 6xz$$
 $\rho(\vec{r}(t)) = (t^2)^2 + 6(t)\left(\frac{2}{3}t^3\right) = 5t^4$
 $\vec{v} = (1, 2t, 2t^2)$ $|\vec{v}| = \sqrt{1 + 4t^2 + 4t^4} = 1 + 2t^2$
 $M = \int \rho \, ds = \int \rho(\vec{r}(t)) \, |\vec{v}| \, dt = \int_0^1 5t^4 (1 + 2t^2) \, dt = \int_0^1 5t^4 + 10t^6 \, dt$
 $= \left[t^5 + 10\frac{t^7}{7}\right]_0^1 = 1 + \frac{10}{7} = \frac{17}{7}$

7. Find the work done when a bead is pushed along the "twisted cubic" curve $\vec{r}(t) = \left(t, t^2, \frac{2}{3}t^3\right)$ between t = 0 and t = 1 if you apply the force $\vec{F} = (3z, y, x)$.

a.
$$\frac{1}{2}$$

b. 1
c. $\frac{3}{2}$ Correct Choice
d. 2
e. $\frac{5}{2}$

Solution:
$$\vec{F} = (3z, y, x)$$
 $\vec{F}(\vec{r}(t)) = (2t^3, t^2, t)$ $\vec{v} = (1, 2t, 2t^2)$
 $W = \int \vec{F} \cdot d\vec{s} = \int \vec{F}(\vec{r}(t)) \cdot \vec{v} dt = \int_0^1 (2t^3 + 2t^3 + 2t^3) dt = \int_0^1 6t^3 dt = \left[\frac{6t^4}{4}\right]_0^1 = \frac{3}{2}$

- **8**. You are riding on a train which is currently travelling EAST but curving toward the SOUTH. Where do \hat{B} and \hat{N} for the train currently point?
 - a. \hat{B} pointsSOUTH and \hat{N} pointsDOWN.b. \hat{B} pointsSOUTH and \hat{N} pointsUP.c. \hat{B} pointsUP and \hat{N} pointsSOUTH.d. \hat{B} pointsDOWN and \hat{N} pointsSOUTH.c. \hat{B} pointsDOWN and \hat{N} pointsSOUTH.

Solution: \vec{v} and \hat{T} point EAST and \vec{a} points horizontally to the right of East. So \hat{N} points SOUTH and $\hat{B} = \hat{T} \times \hat{N}$ points DOWN.

9. For the function $f = x \sin(yz)$, which of the following are correct?

I.
$$\frac{\partial^2 f}{\partial x \partial y} = -z \cos yz$$
 III. $\frac{\partial^2 f}{\partial x \partial z} = y \cos yz$ V. $\frac{\partial^2 f}{\partial y \partial z} = x \cos yz - xyz \sin yz$
II. $\frac{\partial^2 f}{\partial y \partial x} = z \cos yz$ IV. $\frac{\partial^2 f}{\partial z \partial x} = y \cos yz$ VI. $\frac{\partial^2 f}{\partial z \partial y} = x \cos yz + xyz \sin yz$

- a. I and II.
- **b**. III and IV. Correct Choice
- c. V and VI.
- d. I, II and III.
- e. IV, V and VI.

Solution: Since mixed partial derivatives are equal, I and II cannot both be correct and V and VI cannot both be correct.

- **10**. Find the equation of the plane tangent to the graph of the function $z = f(x, y) = x^2y + xy^3$ at (x, y) = (2, 1). What is the *z*-intercept?
 - **a**. -14 Correct Choice **b**. -6
 - **D**. –0
 - **c**. 6
 - **d**. 14
 - **e**. 26

Solution: $f(x,y) = x^2y + xy^3$ f(2,1) = 6 $z = f_{tan}(x,y)$ $f_x(x,y) = 2xy + y^3$ $f_x(2,1) = 5$ $z = f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1)$ $f_y(x,y) = x^2 + 3xy^2$ $f_y(2,1) = 10$ z = 6 + 5(x-2) + 10(y-1)

z-intercept is c = 6 + 5(-2) + 10(-1) = -14

- **11.** Find the equation of the plane tangent to the graph of the equation $x\sin(yz) = 1$ at $P = (\sqrt{2}, \frac{1}{4}, \pi)$. What is the *z*-intercept?
 - **a**. $\sqrt{2} + \frac{\pi}{4}$ **b**. $1 + \frac{\pi}{2}$ **c**. $2 + \pi$ **d**. $4 + 2\pi$ Correct Choice **e**. $2\sqrt{2} + 2\pi$

Solution: The graph is a level set of the function $F = x \sin(yz)$. $\vec{\nabla}F = (\sin(yz), xz \cos(yz), xy \cos(yz))$ $\vec{N} = \vec{\nabla}F \Big|_P = \left(\sin\left(\frac{\pi}{4}\right), \sqrt{2}\pi \cos\left(\frac{\pi}{4}\right), \sqrt{2}\frac{1}{4}\cos\left(\frac{\pi}{4}\right)\right) = \left(\frac{1}{\sqrt{2}}, \pi, \frac{1}{4}\right)$ $\vec{N} \cdot X = \vec{N} \cdot P \qquad \frac{1}{\sqrt{2}}x + \pi y + \frac{1}{4}z = \frac{1}{\sqrt{2}} \cdot \sqrt{2} + \pi \cdot \frac{1}{4} + \frac{1}{4} \cdot \pi = 1 + \frac{\pi}{2}$ *z*-intercept is $c = 4\left(1 + \frac{\pi}{2}\right) = 4 + 2\pi$

- **12**. A fish is currently at the point (x, y, z) = (1, 2, -3) and has velocity $\vec{v} = (1, 2, 1)$. If the salt density is $D = xyz^2$, find $\frac{dD}{dt}$, the time rate of change of the density as seen by the fish at the current instant.
 - **a**. 12
 - b. 24 Correct Choice
 - **c**. 36
 - **d**. 48
 - **e**. 60

Solution:
$$\vec{\nabla}D = (yz^2, xz^2, 2xyz) = (18, 9, -12)$$

 $\frac{dD}{dt} = \vec{v} \cdot \vec{\nabla}D = (1, 2, 1) \cdot (18, 9, -12) = 18 + 18 - 12 = 24$

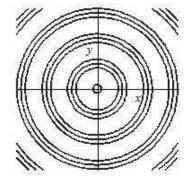
13. The equation $z^3 \sin x + z \cos y = 3$ defines z as an implicit function of x and y. Notice that its graph passes through the point $\left(\frac{\pi}{4}, \frac{\pi}{4}, \sqrt{2}\right)$. Find $\frac{\partial z}{\partial y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$.

a.
$$\frac{\sqrt{2}}{5}$$

b. $\frac{\sqrt{2}}{6}$
c. $\frac{\sqrt{2}}{7}$ Correct Choice
d. $\frac{1}{6}$
e. $\frac{1}{7}$

Solution: Apply $\frac{\partial}{\partial y}$ to both sides: $3z^2 \frac{\partial z}{\partial y} \sin x + \frac{\partial z}{\partial y} \cos y - z \sin y = 0$ $6 \frac{\partial z}{\partial y} \frac{1}{\sqrt{2}} + \frac{\partial z}{\partial y} \frac{1}{\sqrt{2}} - \sqrt{2} \frac{1}{\sqrt{2}} = 0$ $7 \frac{\partial z}{\partial y} - \sqrt{2} = 0$ $\frac{\partial z}{\partial y} = \frac{\sqrt{2}}{7}$

- 14. The plot at the right is the contour plot of which of these functions?
 - **a.** $f(x,y) = \sin(x)\sin(y)$ **b.** $f(x,y) = x^2 - y^2$ **c.** $f(x,y) = \sin(\sqrt{x^2 + y^2})$ Correct Choice **d.** $f(x,y) = \sin(x) + \sin(y)$ **e.** $f(x,y) = \sin(xy)$



Solution: Since the plot is circularly symmetric, the function must be a function of only the polar coordinate $r = \sqrt{x^2 + y^2}$.

15. The pressure *P*, the temperature *T*, and the density ρ , of a certain ideal gas are related by $P = 10^{-3}\rho T$. Currently, the temperature is $T = 300^{\circ}$ K and is increasing at 2° K per minute while the density is $\rho = 4 \frac{\text{gm}}{\text{cm}^3}$ and is decreasing at $0.05 \frac{\text{gm}}{\text{cm}^3}$ per minute. Consequently, the pressure is currently $P = 10^{-3}\rho T = 10^{-3}(4)(300) = 1.2$ atm. At what rate is *P* changing and is it increasing or decreasing?

Solution:
$$\frac{dT}{dt} = 2$$
 $\frac{d\rho}{dt} = -0.05$ $\frac{\partial P}{\partial T} = 10^{-3}\rho = .004$ $\frac{\partial P}{\partial \rho} = 10^{-3}T = 0.3$
By chain rule: $\frac{dP}{dt} = \frac{\partial P}{\partial T}\frac{dT}{dt} + \frac{\partial P}{\partial \rho}\frac{d\rho}{dt} = .004 \times 2 + 0.3 \times (-0.05) = .008 - .015 = -0.007$
So *P* is decreasing at 0.007 atm per minute.

16. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$. If the radius and height are measured to be $r = 3 \text{ cm} \pm 0.02 \text{ cm}$ and $h = 5 \text{ cm} \pm 0.03 \text{ cm}$, then the volume is computed to be $V = \frac{1}{3}\pi 3^2 5 = 15\pi \text{ cm}^3$. Use differentials to estimate the error in this computed volume.

Solution:
$$\Delta V \approx dV = \frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial h} dh = \frac{2}{3} \pi r h dr + \frac{1}{3} \pi r^2 dh$$

= $\frac{2}{3} \pi (3)(5)(.02) + \frac{1}{3} \pi (3)^2 (.03) = 0.29 \pi = 0.91106$

17. Find the minimum value of the function $f = x^2 + 2y^2 + 4z^2$ on the plane x + y + z = 14.

Solution:

METHOD I: Eliminate a Variable:

$$x = 14 - y - z \qquad f = (14 - y - z)^{2} + 2y^{2} + 4z^{2}$$

$$\frac{\partial f}{\partial y} = -2(14 - y - z) + 4y = 0 \qquad \frac{\partial f}{\partial z} = -2(14 - y - z) + 8z = 0$$

$$6y + 2z = 28 \qquad 2y + 10z = 28 \qquad \Rightarrow \qquad y = 4, z = 2$$

So $x = 8$ and $f(8, 4, 2) = 64 + 32 + 16 = 112$
There is only one critical point and *f* can be arbitrarily large.
So the critical point must be the minimum.

METHOD II: Lagrange Multipliers

 $\vec{\nabla}f = (2x, 4y, 8z) \qquad \vec{\nabla}g = (1, 1, 1) \qquad \vec{\nabla}f = \lambda\vec{\nabla}g \qquad 2x = \lambda \qquad 4y = \lambda \qquad 8z = \lambda$ $\lambda = 2x = 4y = 8z \qquad x = 4z \qquad y = 2z$ Use the constraint: $4z + 2z + z = 14 \qquad 7z = 14 \qquad z = 2 \qquad x = 8 \qquad y = 4$ f(8, 4, 2) = 64 + 32 + 16 = 112There is only one critical point and *f* can be arbitrarily large.

So the critical point must be the minimum.