Name		1-	-12	/48
MATH 251	Final Exam Fall 2014	1	13	/20
Sections 508	P. Yasskin	1	14	/10
		1	15	/25
Multiple Choice: (4 points each. No part credit.)		Тс	otal	/103

- **1**. Find the line of intersection of the planes 3x + 2y 4z = 8 and 3x 2y + 2z = 4. This line intersects the *xy*-plane at
 - **a.** $\left(1, -\frac{7}{3}, -3\right)$ **b.** (4, 10, 6)**c.** (1, 2, 0)
 - **d**. (2,1,0)
 - **e**. $\left(\frac{22}{9}, 2, \frac{4}{3}\right)$

2. The radius of a cylinder is currently r = 50 cm and is increasing at $\frac{dr}{dt} = 2 \frac{\text{cm}}{\text{min}}$. Its height is currently h = 100 cm and decreasing at $\frac{dh}{dt} = -4 \frac{\text{cm}}{\text{min}}$. At what rate is the volume changing?

a.
$$\frac{dV}{dt} = -10\,000\pi$$

b. $\frac{dV}{dt} = 10\,000\pi$
c. $\frac{dV}{dt} = 20\,000\pi$
d. $\frac{dV}{dt} = 30\,000\pi$
e. $\frac{dV}{dt} = 40\,000\pi$

- **3**. Find the tangent plane to the graph of $z = \frac{1}{xy}$ at (1,2). The *z*-intercept is
 - **a**. 0

 - **b**. $\frac{1}{2}$ **c**. $\frac{3}{2}$ **d**. 2 **e**. $\frac{5}{2}$

- **4**. Find the tangent plane to the graph of the ellipsoid $x^2 + xy + 4y^2 + z^2 = 20$ at (3,1,2). The *z*-intercept is
 - **a**. 10
 - **b**. 20
 - **c**. 40
 - **d**. 80
 - **e**. 160

- **5**. How many critical points does the function $f(x, y) = x^3 3xy + y^3$ have?
 - **a**. 0
 - **b**. 1
 - **c**. 2
 - **d**. 3
 - e. infinitely many

- 6. Duke Skywater is flying the Centenial Eagle through a dangerous polaron field whose density is given by $\rho = x^4 + y^3 + z^2$. If Duke is currently at the point P = (1, 2, 3) and has velocity $\vec{v} = (4, 3, 2)$, what is the rate of change of the polaron density as seen by Duke at the current instant?
 - **a**. 16
 - **b**. 24
 - **c**. 32
 - **d**. 48
 - **e**. 64
- 7. Duke Skywater is flying the Centenial Eagle through a dangerous polaron field whose density is given by $\rho = x^4 + y^3 + z^2$. If Duke is currently at the point P = (1, 2, 3) in what **unit vector** direction should he fly to **REDUCE** the polaron density as fast as possible?

- **8**. Find the maximum value of the function f = x + 2y + 2z on the sphere of radius 5 centered at the origin.
 - **a**. 5
 - **b**. $\frac{25}{3}$
 - **c**. 9
 - **d**. $\frac{27}{5}$

9. A wire has the shape of the parabola $y = x^2$ which may be parametrized as $\vec{r}(t) = (t, t^2)$ from (0,0) to $(\sqrt{6}, 6)$. Find it mass if its linear density is $\rho = x$.

a.
$$\frac{1}{4} \ln(2\sqrt{6} + 5) + \frac{5}{2}\sqrt{6}$$

b. $\frac{1}{4} \ln(2\sqrt{6} + 5) - \frac{5}{2}\sqrt{6}$
c. $\frac{125}{12}$
d. $\frac{31}{3}$
e. $\frac{21}{2}$

- **10.** Compute $\int \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2xy^2, 2x^2y)$ along the cubic $y = x^3$ from (1,1) to (2,8). Hint: Use a theorem.
 - **a**. 255
 - **b**. 256
 - **c**. 510
 - **d**. 60
 - **e**. 66

11. Compute $\oint (3y - 2x^2) dx + (3y^2 - 2x) dy$

counterclockwise over the complete boundary of the shape at the right, which is a square of side 4 under an isosceles triangle with height 3. Hint: Use a theorem

- **a**. -110
- **b**. -22
- **c**. 0
- **d**. 22
- **e**. 110

12. Compute $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ over the piece of the hyperbolic paraboloid z = xy oriented upward inside the cylinder $x^2 + y^2 = 9$ for the vector field $\vec{F} = (-3y, 3x, \sqrt{x^2 + y^2})$. Note, the paraboloid may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2\sin\theta\cos\theta)$.

Hint: Use a theorem.

- **a**. $\frac{27}{2}\pi$
- **b**. 27π
- **c**. 54π
- **d**. 108π
- **e**. 216π

. (20 points) For each integral, plot the region of integration and then compute the integral.

a.
$$I = \int_0^2 \int_{y^2}^4 \cos(x^{3/2}) \, dx \, dy$$

b.
$$J = \int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \arctan\left(\frac{y}{x}\right) dx \, dy$$

14. (10 points) An aquarium in the shape of a rectangular solid has a slate bottom costing \$6 per ft², a glass front costing \$2 per ft², and aluminum sides and back costing \$1 per ft². There is no top. Let *L* be the length front to back, *W* be the width side to side and *H* be the height. Write a formula for the total cost, *C*, and find the dimensions and cost of the cheapest such aquarium if the volume is V = 36 ft³. Do not use decimals.

15. (25 points) Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (yz^2, xz^2, (x^2 + y^2)z)$ and the solid cone $\sqrt{x^2 + y^2} \le z \le 4$.

Be careful with orientations. Use the following steps:

First the Left Hand Side:

a. Compute the divergence:

 $\vec{\nabla} \cdot \vec{F} =$

- b. Name your coordinate system:
- c. Express the divergence and the volume element in those coordinates:

$$\vec{\nabla} \cdot \vec{F} = dV =$$

d. Compute the left hand side:

$$\iiint\limits_V \vec{\nabla} \cdot \vec{F} \, dV =$$

Second the Right Hand Side:

The boundary surface consists of a cone C and a disk D with appropriate orientations.

e. Parametrize the disk D:

$$\vec{R}(r,\theta) =$$

f. Compute the tangent vectors:

 $\vec{e}_r =$

$$\vec{e}_{\theta} =$$

g. Compute the normal vector:

$$\vec{N} =$$

h. Evaluate $\vec{F} = (yz^2, xz^2, (x^2 + y^2)z)$ on the disk:

$$\vec{F}\Big|_{\vec{R}(r,\theta)} =$$

i. Compute the dot product:

 $\vec{F} \cdot \vec{N} =$

j. Compute the flux through *D*:

$$\iint_D \vec{F} \cdot d\vec{S} =$$

The cone *C* may be parametrized by: $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$

k. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

I. Compute the normal vector:

$$\vec{N} =$$

m. Evaluate $\vec{F} = (yz^2, xz^2, (x^2 + y^2)z)$ on the cone:

$$\vec{F}\Big|_{\vec{R}(r,\theta)} =$$

n. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

o. Compute the flux through *C*:

$$\iint_C \vec{F} \cdot d\vec{S} =$$

p. Compute the **TOTAL** right hand side: