Name____

MATH 251

Exam 1A Fall 2015

Sections 511/512 (circle one)

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1.	lf	$\vec{a} = (4, -2, 1)$	and	$\vec{b} = (2, -1, 1),$	then	$ \vec{a}-3\vec{b} $	=
1.	Ш	a = (4, -2, 1)	and	D = (2, -1, 1),	men	a-3b	l

- **a**. 1
- **b**. 3
- **c**. 5
- **d**. 9
- **e**. 13

2. The plot at the right is the contour plot of which function? HINT: Where is the level set with value 0?

- **b**. $\sin(x)\sin(y)$
- **c**. $\cos(x)\cos(y)$
- **d**. $\cos(x)\sin(y)$
- **e**. $\sin(xy)$

1-12

13

14

15

Total

/60

/16

/12

/12

/100

- **3**. Suppose $proj_{\vec{v}}\vec{u} = (3,1)$. Which of the following is **inconsistent** with this fact?
 - **a**. $proj_{\perp \vec{v}} \vec{u} = (2, -6)$
 - **b**. $proj_{\perp \vec{v}} \vec{u} = (-2, 6)$
 - **c**. $\vec{u} = (4, -2)$
 - **d**. $\vec{v} = (6,2)$
 - **e**. $\vec{v} = (1, -3)$

- **4**. Which of the following is an ellipse in the 1^{st} quadrant tangent to both the x and y-axes?
 - **a.** $9(x-3)^2 + 4(y-2)^2 = 36$
 - **b.** $4(x-3)^2 + 9(y-2)^2 = 36$
 - **c.** $4(x-2)^2 + 9(y-3)^2 = 36$
 - **d.** $4(x-3)^2 + 9(y-2)^2 = 1$
 - **e**. $9(x-2)^2 + 4(y-3)^2 = 1$

- **5**. In 3-dimensional space, the equation $x^2 4x y^2 + 6y + z^2 = 5$ is
 - **a.** a hyperboloid with center (2,3,0) and axis $\vec{r}(t) = (2,3,t)$.
 - **b.** a hyperboloid with center (2,3,0) and axis $\vec{r}(t) = (2,3+t,0)$.
 - **c**. a hyperbolic cylinder with axis $\vec{r}(t) = (2,3,t)$.
 - **d**. a cone with vertex (2,3,0) and axis $\vec{r}(t) = (2,3+t,0)$.
 - **e**. two planes which intersect at the line $\vec{r}(t) = (2, 3 + t, 0)$.

- **6.** If \vec{u} points SOUTHEAST and \vec{v} points UP, where does $\vec{u} \times \vec{v}$ point?
 - a. DOWN
 - b. SOUTHWEST
 - c. WEST
 - d. NORTHEAST
 - e. NORTHWEST

- 7. Find the intersection of the line (x,y,z) = (2t,-1+2t,2+2t) and the plane 3x-2y+z=8. At this point x+y+z=
 - **a**. −3
 - **b**. -1
 - **c**. 0
 - **d**. 5
 - **e**. 7

- 8. Compute $\lim_{h\to 0} \frac{(2x+2h+3y)^2-(2x+3y)^2}{h}$
 - **a**. 2x + 3y
 - **b**. 4x + 6y
 - **c**. 6x + 9y
 - **d**. 8x + 12y
 - **e**. 12x + 18y

- **9**. Find the plane tangent to the graph of $z = x^2 e^{2y}$ at (3,0). The z-intercept is
 - **a**. −27
 - **b**. -18
 - **c**. –9
 - **d**. 9
 - **e**. 18

- **10**. If S(3,2) = 5 and $\frac{\partial S}{\partial x}(3,2) = -0.3$ and $\frac{\partial S}{\partial y}(3,2) = 0.4$, estimate S(3.2,1.7).
 - **a**. 4.82
 - **b**. 4.9
 - **c**. 5.0
 - **d**. 5.1
 - **e**. 5.18

11. A semicircle sits on top of a rectangle of width 2r and height h. If the radius decreases from $3~\rm cm$ to $2.97~\rm cm$ while the height increases from $4~\rm cm$ to $4.02~\rm cm$, use the linear approximation to determine whether the area increases or decreases and by how much.

- **a**. increases by $0.09\pi 0.12$
- **b**. increases by $0.09\pi + 0.12$
- **c**. increases by $0.09\pi + 0.36$
- **d**. decreases by $0.09\pi + 0.36$
- **e**. decreases by $0.09\pi + 0.12$

- **12**. The temperature in a room is $T = z^2(2x + 3y)$. Currently, a fly is at $\vec{r} = (4,3,2)$ and has velocity $\vec{v} = (3,2,1)$. What is the rate of change of the temperature as seen by the fly?
 - **a**. 16
 - **b**. 116
 - **c**. 64
 - **d**. 164
 - **e**. 264

Work Out: (Points indicated. Part credit possible. Show all work.)

- **13**. (16 points) For the parametric curve $\vec{r}(t) = \left(\frac{2}{t}, 6t, 3t^3\right)$ compute each of the following:
 - **a**. velocity \vec{v}
 - **b.** speed $|\vec{v}|$ HINT: The quantity inside the square root is a perfect square.
 - **c**. arc length $L = \int_{(2,6,3)}^{(1,12,24)} ds$

- **d**. acceleration \vec{a}
- **e**. unit binormal \hat{B}

f. tangential acceleration a_T

14. (12 points) A wire has the shape of the parametric curve $\vec{r}(t) = \left(\frac{2}{t}, 6t, 3t^3\right)$ between (2,6,3) and (1,12,24). Find the mass of the wire if the linear mass density is $\rho = \frac{1}{12}xyz$. Don't simplify the answer.

15. (12 points) A mass slides along a wire which has the shape of the parametric curve $\vec{r}(t) = \left(\frac{2}{t}, 6t, 3t^3\right)$ between (2,6,3) and (1,12,24) under the action of the force $\vec{F} = (z,y,x)$. Find the work done by the force.