\qquad

MATH 251
Sections 511/512 (circle one)

Exam 1A Fall 2015
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$
13	$/ 16$
14	$/ 12$
15	$/ 12$
Total	$/ 100$

1. If $\vec{a}=(4,-2,1)$ and $\vec{b}=(2,-1,1)$, then $|\vec{a}-3 \vec{b}|=$
a. 1
b. 3
c. 5
d. 9
e. 13
2. The plot at the right is the contour plot of which function? HINT: Where is the level set with value 0 ?
a. $\quad \sin (x) \cos (y)$
b. $\sin (x) \sin (y)$
C. $\cos (x) \cos (y)$
d. $\cos (x) \sin (y)$
e. $\sin (x y)$

3. Suppose $\operatorname{proj}_{\vec{v}} \vec{u}=(3,1)$. Which of the following is inconsistent with this fact?
a. $\operatorname{proj}_{\vec{\rightharpoonup}} \vec{u}=(2,-6)$
b. $\operatorname{proj}_{\downarrow} \vec{\imath} \vec{u}=(-2,6)$
c. $\vec{u}=(4,-2)$
d. $\vec{v}=(6,2)$
e. $\vec{v}=(1,-3)$
4. Which of the following is an ellipse in the $1^{\text {st }}$ quadrant tangent to both the x and y-axes?
a. $9(x-3)^{2}+4(y-2)^{2}=36$
b. $4(x-3)^{2}+9(y-2)^{2}=36$
c. $4(x-2)^{2}+9(y-3)^{2}=36$
d. $4(x-3)^{2}+9(y-2)^{2}=1$
e. $9(x-2)^{2}+4(y-3)^{2}=1$
5. In 3-dimensional space, the equation $x^{2}-4 x-y^{2}+6 y+z^{2}=5$ is
a. a hyperboloid with center $(2,3,0)$ and axis $\vec{r}(t)=(2,3, t)$.
b. a hyperboloid with center $(2,3,0)$ and axis $\vec{r}(t)=(2,3+t, 0)$.
c. a hyperbolic cylinder with axis $\vec{r}(t)=(2,3, t)$.
d. a cone with vertex $(2,3,0)$ and axis $\vec{r}(t)=(2,3+t, 0)$.
e. two planes which intersect at the line $\vec{r}(t)=(2,3+t, 0)$.
6. If \vec{u} points SOUTHEAST and \vec{v} points UP, where does $\vec{u} \times \vec{v}$ point?
a. DOWN
b. SOUTHWEST
c. WEST
d. NORTHEAST
e. NORTHWEST
7. Find the intersection of the line $(x, y, z)=(2 t,-1+2 t, 2+2 t)$ and the plane $3 x-2 y+z=8$. At this point $x+y+z=$
a. -3
b. -1
c. 0
d. 5
e. 7
8. Compute $\lim _{h \rightarrow 0} \frac{(2 x+2 h+3 y)^{2}-(2 x+3 y)^{2}}{h}$
a. $2 x+3 y$
b. $4 x+6 y$
c. $6 x+9 y$
d. $8 x+12 y$
e. $12 x+18 y$
9. Find the plane tangent to the graph of $z=x^{2} e^{2 y}$ at (3,0). The z-intercept is
a. -27
b. -18
c. -9
d. 9
e. 18
10. If $S(3,2)=5$ and $\frac{\partial S}{\partial x}(3,2)=-0.3$ and $\frac{\partial S}{\partial y}(3,2)=0.4$, estimate $S(3.2,1.7)$.
a. 4.82
b. 4.9
c. 5.0
d. 5.1
e. 5.18
11. A semicircle sits on top of a rectangle of width $2 r$ and height h. If the radius decreases from 3 cm to 2.97 cm while the height increases from 4 cm to 4.02 cm , use the linear approximation to determine whether the area increases or decreases and by how much.
a. increases by $0.09 \pi-0.12$
b. increases by $0.09 \pi+0.12$
c. increases by $0.09 \pi+0.36$
d. decreases by $0.09 \pi+0.36$
e. decreases by $0.09 \pi+0.12$
12. The temperature in a room is $T=z^{2}(2 x+3 y)$. Currently, a fly is at $\vec{r}=(4,3,2)$ and has velocity $\vec{v}=(3,2,1)$. What is the rate of change of the temperature as seen by the fly?
a. 16
b. 116
c. 64
d. 164
e. 264
13. (16 points) For the parametric curve $\vec{r}(t)=\left(\frac{2}{t}, 6 t, 3 t^{3}\right)$ compute each of the following: a. velocity \vec{v}
b. speed $|\vec{v}|$ HINT: The quantity inside the square root is a perfect square.
c. arc length $L=\int_{(2,6,3)}^{(1,12,24)} d s$
d. acceleration \vec{a}
e. unit binormal \hat{B}
f. tangential acceleration a_{T}
14. (12 points) A wire has the shape of the parametric curve $\vec{r}(t)=\left(\frac{2}{t}, 6 t, 3 t^{3}\right)$ between $(2,6,3)$ and $(1,12,24)$. Find the mass of the wire if the linear mass density is $\rho=\frac{1}{12} x y z$.
Don't simplify the answer.
15. (12 points) A mass slides along a wire which has the shape of the parametric curve $\vec{r}(t)=\left(\frac{2}{t}, 6 t, 3 t^{3}\right)$ between $(2,6,3)$ and $(1,12,24)$ under the action of the force $\vec{F}=(z, y, x)$. Find the work done by the force.
