Name \qquad
MATH 251
Sections 511/512 (circle one)

Exam 1A Fall 2015
Solutions P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$
13	$/ 16$
14	$/ 12$
15	$/ 12$
Total	$/ 100$

1. If $\vec{a}=(4,-2,1)$ and $\vec{b}=(2,-1,1)$, then $|\vec{a}-3 \vec{b}|=$
a. 1
b. 3 Correct
c. 5
d. 9
e. 13

Solution: $|\vec{a}-3 \vec{b}|=|(-2,1,-2)|=\sqrt{4+1+4}=3$
2. The plot at the right is the contour plot of which function?

HINT: Where is the level set with value 0 ?
a. $\sin (x) \cos (y)$
b. $\sin (x) \sin (y)$
C. $\cos (x) \cos (y)$
d. $\cos (x) \sin (y)$ Correct
e. $\sin (x y)$

Solution: There is a level set at $x=\frac{\pi}{2}$ but not $x=0$. So it must have a $\cos (x)$ but not $\sin (x)$ or $\sin (x y)$ factor. There is a level set at $y=0$ but not $y=\frac{\pi}{2}$. So it must have a $\sin (y)$ but not $\cos (y)$ factor.
3. Suppose $\operatorname{proj}_{\vec{v}} \vec{u}=(3,1)$. Which of the following is inconsistent with this fact?
a. $\operatorname{proj}_{\vec{\rightharpoonup}} \vec{u}=(2,-6)$
b. $\operatorname{proj}_{\stackrel{\rightharpoonup}{ } \vec{u}=(-2,6)}$
c. $\vec{u}=(4,-2)$
d. $\vec{v}=(6,2)$
e. $\vec{v}=(1,-3)$ Correct

Solution: $\operatorname{proj}_{\vec{v}} \vec{u}$ must be perpendicular to $\operatorname{proj}_{\perp \overrightarrow{ }} \vec{u}$, and $(2,-6) \cdot(3,1)=0$ and $(-2,6) \cdot(3,1)=0$. $\operatorname{proj}_{\vec{v}} \vec{u}$ must be parallel to \vec{v}, and $(6,2)$ is a multiple but $(1,-3)$ is not.
4. Which of the following is an ellipse in the $1^{\text {st }}$ quadrant tangent to both the x and y-axes?
a. $9(x-3)^{2}+4(y-2)^{2}=36$
b. $4(x-3)^{2}+9(y-2)^{2}=36$ Correct
c. $4(x-2)^{2}+9(y-3)^{2}=36$
d. $4(x-3)^{2}+9(y-2)^{2}=1$
e. $9(x-2)^{2}+4(y-3)^{2}=1$

Solution: The centers are (3,2) in (a), (b) and (d) and (2,3) in (c) and (e). In (d) and (e) the x and y radii are $\frac{1}{2}$ and $\frac{1}{3}$, not enough to reach the axes from the center. In (a) the x radius is 2 which cannot reach the y axis from the center (3,2). In (c) the y radius is 2 which cannot reach the x axis from the center (2,3). In (b) the x radius is 3 and the y radius is 2 just matching the distances from the center $(3,2)$ to the axes.
5. In 3-dimensional space, the equation $x^{2}-4 x-y^{2}+6 y+z^{2}=5$ is
a. a hyperboloid with center $(2,3,0)$ and axis $\vec{r}(t)=(2,3, t)$.
b. a hyperboloid with center $(2,3,0)$ and axis $\vec{r}(t)=(2,3+t, 0)$.
c. a hyperbolic cylinder with axis $\vec{r}(t)=(2,3, t)$.
d. a cone with vertex $(2,3,0)$ and axis $\vec{r}(t)=(2,3+t, 0)$. Correct
e. two planes which intersect at the line $\vec{r}(t)=(2,3+t, 0)$.

Solution: Complete the squares to get $(x-2)^{2}-(y-3)^{2}+z^{2}=0$.
This is a cone with axis parallel to the y-axis.
6. If \vec{u} points SOUTHEAST and \vec{v} points UP, where does $\vec{u} \times \vec{v}$ point?
a. DOWN
b. SOUTHWEST Correct
c. WEST
d. NORTHEAST
e. NORTHWEST

Solution: Point the fingers of your right hand pointing SOUTHEAST with your palm facing UP. Your thumb points SOUTHWEST.
7. Find the intersection of the line $(x, y, z)=(2 t,-1+2 t, 2+2 t)$ and the plane $3 x-2 y+z=8$. At this point $x+y+z=$
a. -3
b. -1
c. 0
d. 5
e. 7 Correct

Solution: Plug the line into the plane and solve for t :
$3(2 t)-2(-1+2 t)+(2+2 t)=8 \quad 4 t+4=8 \quad 4 t=4 \quad t=1$
Plug back into the line: $\quad(x, y, z)=(2,-1+2,2+2)=(2,1,4) \quad x+y+z=2+1+4=7$
8. Compute $\lim _{h \rightarrow 0} \frac{(2 x+2 h+3 y)^{2}-(2 x+3 y)^{2}}{h}$
a. $2 x+3 y$
b. $4 x+6 y$
c. $6 x+9 y$
d. $8 x+12 y$ Correct
e. $12 x+18 y$

Solution: $\frac{\partial}{\partial x}(2 x+3 y)^{2}=2(2 x+3 y) 2=8 x+12 y$
9. Find the plane tangent to the graph of $z=x^{2} e^{2 y}$ at $(3,0)$. The z-intercept is
a. -27
b. -18
c. -9 Correct
d. 9
e. 18

Solution: $\quad f(x, y)=x^{2} e^{2 y} \quad f(3,0)=9 \quad z=f(3,0)+f_{x}(3,0)(x-3)+f_{y}(3,0)(y-0)$

$$
\begin{array}{lll}
f_{x}(x, y)=2 x e^{2 y} & f_{x}(3,0)=6 & =9+6(x-3)+18(y) \\
f_{y}(x, y)=2 x^{2} e^{2 y} & f_{y}(3,0)=18 & =6 x+18 y-9 \quad c=-9
\end{array}
$$

10. If $S(3,2)=5$ and $\frac{\partial S}{\partial x}(3,2)=-0.3$ and $\frac{\partial S}{\partial y}(3,2)=0.4$, estimate $S(3.2,1.7)$.
a. 4.82 Correct
b. 4.9
c. 5.0
d. 5.1
e. 5.18

Solution: The linear approximation says:
$S(x, y) \approx S_{\tan }(x, y)=S(a, b)+S_{x}(a, b)(x-a)+S_{y}(a, b)(y-b)$
Here $(x, y)=(3.2,1.7)$ and $(a, b)=(3,2)$. So
$S(3.2,1.7) \approx S(3,2)+S_{x}(3,2)(.2)+S_{y}(3,2)(-.3)=5-0.3(.2)+0.4(-.3)=4.82$
11. A semicircle sits on top of a rectangle of width $2 r$ and height h. If the radius decreases from 3 cm to 2.97 cm while the height increases from 4 cm to 4.02 cm , use the linear approximation to determine whether the area increases or decreases and by how much.

a. increases by $0.09 \pi-0.12$
b. increase by $0.09 \pi+0.12$
c. increases by $0.09 \pi+0.36$
d. decreases by $0.09 \pi+0.36$
e. decreases by $0.09 \pi+0.12$ Correct

Solution: $\quad A=2 r h+\frac{1}{2} \pi r^{2}$

$$
\begin{aligned}
\Delta A \approx d A & =\frac{\partial A}{\partial r} d r+\frac{\partial A}{\partial h} d h=(2 h+\pi r) d r+(2 r) d h \\
& =(2 \cdot 4+\pi \cdot 3)(-.03)+(2 \cdot 3)(.02)=-0.09 \pi-0.12<0 \quad \text { decreases }
\end{aligned}
$$

12. The temperature in a room is $T=z^{2}(2 x+3 y)$. Currently, a fly is at $\vec{r}=(4,3,2)$ and has velocity $\vec{v}=(3,2,1)$. What is the rate of change of the temperature as seen by the fly?
a. 16
b. 116 Correct
c. 64
d. 164
e. 264

Solution: $\quad \frac{d T}{d t}=\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t}+\frac{\partial T}{\partial z} \frac{d z}{d t}=\left(2 z^{2}\right) v_{1}+\left(3 z^{2}\right) v_{2}+(2 z(2 x+3 y)) v_{3}$

$$
=\left(2 \cdot 2^{2}\right) 3+\left(3 \cdot 2^{2}\right) 2+(2 \cdot 2(2 \cdot 4+3 \cdot 3)) 1=116
$$

13. (16 points) For the parametric curve $\vec{r}(t)=\left(\frac{2}{t}, 6 t, 3 t^{3}\right)$ compute each of the following:
a. velocity \vec{v}

Solution: $\vec{v}=\left(\frac{-2}{t^{2}}, 6,9 t^{2}\right)$
b. speed $|\vec{v}|$ HINT: The quantity inside the square root is a perfect square.

Solution: $|\vec{v}|=\sqrt{\frac{4}{t^{4}}+36+81 t^{4}}=\frac{2}{t^{2}}+9 t^{2}$
c. arc length $L=\int_{(2,6,3)}^{(1,12,24)} d s$

Solution: $\quad L=\int_{1}^{2}|\vec{v}| d t=\int_{1}^{2}\left(\frac{2}{t^{2}}+9 t^{2}\right) d t=\left[\frac{-2}{t}+3 t^{3}\right]_{1}^{2}=(-1+24)-(-2+3)=22$
d. acceleration \vec{a}

Solution: $\vec{a}=\left(\frac{4}{t^{3}}, 0,18 t\right)$
e. unit binormal \hat{B}

Solution: $\vec{v} \times \vec{a}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{-2}{t^{2}} & 6 & 9 t^{2} \\ \frac{4}{t^{3}} & 0 & 18 t\end{array}\right|=\hat{\imath}(108 t)-\hat{\jmath}\left(\frac{-36}{t}-\frac{36}{t}\right)+\hat{k}\left(\frac{-24}{t^{3}}\right),\left(108 t, \frac{72}{t}, \frac{-24}{t^{3}}\right)=12\left(9 t, \frac{6}{t}, \frac{-2}{t^{3}}\right)$
$|\vec{v} \times \vec{a}|=12 \sqrt{81 t^{2}+\frac{36}{t^{2}}+\frac{4}{t^{6}}}=12\left(9 t+\frac{2}{t^{3}}\right)=\frac{12\left(9 t^{4}+2\right)}{t^{3}}$
$\hat{B}=\frac{\vec{v} \times \vec{a}}{|\vec{v} \times \vec{a}|}=\frac{t^{3}}{9 t^{4}+2}\left(9 t, \frac{6}{t}, \frac{-2}{t^{3}}\right)=\left(\frac{9 t^{4}}{9 t^{4}+2}, \frac{6 t^{2}}{9 t^{4}+2}, \frac{-2}{9 t^{4}+2}\right)$
f. tangential acceleration a_{T}

Solution: $\quad a_{T}=\frac{d|\vec{v}|}{d t}=\frac{d}{d t}\left(\frac{2}{t^{2}}+9 t^{2}\right)=\frac{-4}{t^{3}}+18 t$
14. (12 points) A wire has the shape of the parametric curve $\vec{r}(t)=\left(\frac{2}{t}, 6 t, 3 t^{3}\right)$ between $(2,6,3)$ and $(1,12,24)$. Find the mass of the wire if the linear mass density is $\rho=\frac{1}{12} x y z$.
Don't simplify the answer.
Solution: $\vec{v}=\left(\frac{-2}{t^{2}}, 6,9 t^{2}\right) \quad|\vec{v}|=\frac{2}{t^{2}}+9 t^{2} \quad \rho=\frac{1}{12} x y z=\frac{1}{12}\left(\frac{2}{t}\right)(6 t)\left(3 t^{3}\right)=3 t^{3}$

$$
\begin{aligned}
M & =\int_{(2,6,3)}^{(1,12,12)} \rho d s=\int_{1}^{2} \frac{1}{12} x y z|\vec{v}| d t=\int_{1}^{2} 3 t^{3}\left(\frac{2}{t^{2}}+9 t^{2}\right) d t=\int_{1}^{2}\left(6 t+27 t^{5}\right) d t=\left[3 t^{2}+\frac{9 t^{6}}{2}\right]_{1}^{2} \\
& =\left(12+\frac{9 \cdot 2^{6}}{2}\right)-\left(3+\frac{9}{2}\right)=\frac{585}{2}
\end{aligned}
$$

15. (12 points) A mass slides along a wire which has the shape of the parametric curve $\vec{r}(t)=\left(\frac{2}{t}, 6 t, 3 t^{3}\right)$ between $(2,6,3)$ and $(1,12,24)$ under the action of the force $\vec{F}=(z, y, x)$.
Find the work done by the force.
Solution: $\vec{F}=(z, y, x)=\left(3 t^{3}, 6 t, \frac{2}{t}\right) \quad \vec{v}=\left(\frac{-2}{t^{2}}, 6,9 t^{2}\right)$

$$
\begin{aligned}
& \vec{F} \cdot \vec{v}=3 t^{3} \frac{-2}{t^{2}}+6 t 6+\frac{2}{t} 9 t^{2}=-6 t+36 t+18 t=48 t \\
& W=\int_{(2,6,3)}^{(1,12,12)} \vec{F} \cdot d \vec{s}=\int_{1}^{2} \vec{F} \cdot \vec{v} d t=\int_{1}^{2} 48 t d t=\left[24 t^{2}\right]_{1}^{2}=24(4-1)=72
\end{aligned}
$$

