\qquad
MATH 251
Sections 511/512 (circle one)

Exam 1B Fall 2015
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$
13	$/ 16$
14	$/ 12$
15	$/ 12$
Total	$/ 100$

1. If $\vec{a}=(2,-1,2)$ and $\vec{b}=(1,2,5)$, then $|\vec{a}+2 \vec{b}|=$
a. 1
b. 3
c. 5
d. 9
e. 13
2. The plot at the right is the contour plot of which function? HINT: Where is the level set with value 0 ?
a. $\sin (x) \cos (y)$
b. $\sin (x) \sin (y)$
C. $\cos (x) \cos (y)$
d. $\cos (x) \sin (y)$
e. $\sin (x y)$

3. Suppose $\operatorname{proj}_{\vec{v}} \vec{u}=(3,1)$. Which of the following is inconsistent with this fact?
a. $\operatorname{proj}_{\vec{\rightharpoonup}} \vec{u}=(2,-6)$
b. $\operatorname{proj}_{\vec{\imath}} \vec{u}=(-2,5)$
c. $\vec{u}=(4,-2)$
d. $\vec{v}=(6,2)$
e. $\vec{v}=(-3,-1)$
4. Find the asymptotes of the hyperbola $4(x-2)^{2}-9(y-3)^{2}=36$.
a. $y=2 \pm \frac{3}{2}(x-3)$
b. $y=2 \pm \frac{2}{3}(x-3)$
c. $y=3 \pm \frac{3}{2}(x-2)$
d. $y=3 \pm \frac{2}{3}(x-2)$
e. $y=-3 \pm \frac{2}{3}(x+2)$
5. The plot at the right is the graph of which polar curve?
a. $r=2+2 \cos \theta$
b. $r=2-2 \cos \theta$
c. $r=2+2 \sin \theta$
d. $r=2-2 \sin \theta$

6. If \vec{u} points SOUTHEAST and \vec{v} points NORTH, where does $\vec{u} \times \vec{v}$ point?
a. UP
b. DOWN
c. SOUTHWEST
d. WEST
e. NORTHEAST
7. Find the plane through the points $A=(2,3,4), \quad B=(1,3,5)$ and $C=(2,1,5)$. Its z-intercept is:
a. 0
b. 5
c. 10
d. 15
e. $\frac{15}{2}$
8. Compute $\lim _{h \rightarrow 0} \frac{(2 x+3 y+3 h)^{2}-(2 x+3 y)^{2}}{h}$
a. $2 x+3 y$
b. $4 x+6 y$
c. $6 x+9 y$
d. $8 x+12 y$
e. $12 x+18 y$
9. Find the plane tangent to the graph of $z=x^{3} e^{2 y}$ at $(2,1)$. The z-intercept is
a. $-32 e^{2}$
b. $-8 e^{2}$
c. 0
d. $8 e^{2}$
e. $32 e^{2}$
10. If $T(3,2)=4$ and $\frac{\partial T}{\partial x}(3,2)=-0.4$ and $\frac{\partial T}{\partial y}(3,2)=0.2$, estimate $T(2.8,2.3)$.
a. 3.7
b. 3.8
c. 3.86
d. 3.9
e. 4.14
11. A semicircle sits on top of a rectangle of width $2 r$ and height h. If the radius increases from 3 cm to 3.03 cm while the height decreases from 4 cm to 3.98 cm , use the linear approximation to determine whether the area increases or decreases and by how much.

a. increases by $0.09 \pi-0.12$
b. increases by $0.09 \pi+0.12$
c. increase by $0.09 \pi+0.36$
d. decreases by $0.09 \pi+0.36$
e. decreases by $0.09 \pi+0.12$
12. The brightness of a candle at the origin seen from the point (x, y, z) is $B=\frac{1}{x^{2}+y^{2}+z^{2}}$. A moth is at $\vec{r}=(-1,2,2)$ and has velocity $\vec{v}=(3,2,1)$. What is the rate of change of the brightness as seen by the moth?
a. $-\frac{2}{3}$
b. $-\frac{2}{27}$
c. $-\frac{2}{81}$
d. $-\frac{3}{4}$
e. $\frac{15}{16}$
13. (16 points) For the parametric curve $\vec{r}(t)=\left(\frac{2}{3} t, t^{2}, t^{3}\right)$ compute each of the following: a. velocity \vec{v}
b. speed $|\vec{v}|$ HINT: The quantity inside the square root is a perfect square.
c. arc length $L=\int_{(0,0,0)}^{(2,9,27)} d s$
d. acceleration \vec{a}
e. unit binormal \hat{B}
f. tangential acceleration a_{T}
14. (12 points) A wire has the shape of the parametric curve $\vec{r}(t)=\left(\frac{2}{3} t, t^{2}, t^{3}\right)$ between $(0,0,0)$ and $(2,9,27)$. Find the mass of the wire if the linear mass density is $\rho=y z$. Don't simplify the answer.
15. (12 points) A mass slides along a wire which has the shape of the parametric curve $\vec{r}(t)=\left(\frac{2}{3} t, t^{2}, t^{3}\right)$ between $(0,0,0)$ and $(2,9,27)$ under the action of the force $\vec{F}=(3 z, 2 y, x)$. Find the work done by the force.
