Name_

MATH 251	Exam 1B	Fall 2015
Sections 511/512 (circle one)		P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1 . If	$\vec{a}=(2,-1,2)$	and $\vec{b} = (1, 2, 5),$	then	$\left \vec{a} + 2\vec{b} \right =$
---------------	--------------------	----------------------------	------	---------------------------------------

- **a**. 1
- **b**. 3
- **c**. 5
- **d**. 9
- **e**. 13

- 2. The plot at the right is the contour plot of which function?HINT: Where is the level set with value 0?
 - **a**. sin(x)cos(y)
 - **b**. $\sin(x)\sin(y)$
 - **c**. $\cos(x)\cos(y)$
 - **d**. $\cos(x)\sin(y)$
 - **e**. sin(xy)

1-12

13

14

15

Total

/60

/16

/12

/12

/100

- **3**. Suppose $proj_{\vec{v}}\vec{u} = (3,1)$. Which of the following is **inconsistent** with this fact?
 - **a.** $proj_{\perp \vec{v}} \vec{u} = (2, -6)$ **b.** $proj_{\perp \vec{v}} \vec{u} = (-2, 5)$ **c.** $\vec{u} = (4, -2)$ **d.** $\vec{v} = (6, 2)$ **e.** $\vec{v} = (-3, -1)$

- 4. Find the asymptotes of the hyperbola $4(x-2)^2 9(y-3)^2 = 36$.
 - **a.** $y = 2 \pm \frac{3}{2}(x-3)$ **b.** $y = 2 \pm \frac{2}{3}(x-3)$ **c.** $y = 3 \pm \frac{3}{2}(x-2)$ **d.** $y = 3 \pm \frac{2}{3}(x-2)$ **e.** $y = -3 \pm \frac{2}{3}(x+2)$

5. The plot at the right is the graph of which polar curve?

a. $r = 2 + 2\cos\theta$

- **b**. $r = 2 2\cos\theta$
- **c**. $r = 2 + 2\sin\theta$
- **d**. $r = 2 2\sin\theta$

6. If \vec{u} points SOUTHEAST and \vec{v} points NORTH, where does $\vec{u} \times \vec{v}$ point?

- a. UP
- **b**. DOWN
- c. SOUTHWEST
- d. WEST
- e. NORTHEAST

- 7. Find the plane through the points A = (2,3,4), B = (1,3,5) and C = (2,1,5). Its *z*-intercept is:
 - **a**. 0
 - **b**. 5
 - **c**. 10
 - **d**. 15
 - **e**. $\frac{15}{2}$

8. Compute $\lim_{h \to 0} \frac{(2x+3y+3h)^2 - (2x+3y)^2}{h}$

- **a**. 2*x* + 3*y*
- **b**. 4x + 6y
- **c**. 6x + 9y
- **d**. 8x + 12y
- **e**. 12x + 18y

- **9**. Find the plane tangent to the graph of $z = x^3 e^{2y}$ at (2,1). The *z*-intercept is
 - **a**. −32*e*²
 - **b**. $-8e^2$
 - **c**. 0
 - **d**. $8e^2$
 - **e**. 32*e*²

10. If T(3,2) = 4 and $\frac{\partial T}{\partial x}(3,2) = -0.4$ and $\frac{\partial T}{\partial y}(3,2) = 0.2$, estimate T(2.8,2.3).

- **a**. 3.7
- **b**. 3.8
- **c**. 3.86
- **d**. 3.9
- **e**. 4.14

11. A semicircle sits on top of a rectangle of width 2r and height h. If the radius increases from 3 cm to 3.03 cm while the height decreases from 4 cm to 3.98 cm, use the linear approximation to determine whether the area increases or decreases and by how much.

- **a**. increases by $0.09\pi 0.12$
- **b.** increases by $0.09\pi + 0.12$
- **c**. increases by $0.09\pi + 0.36$
- **d**. decreases by $0.09\pi + 0.36$
- **e**. decreases by $0.09\pi + 0.12$

- 12. The brightness of a candle at the origin seen from the point (x, y, z) is $B = \frac{1}{x^2 + y^2 + z^2}$. A moth is at $\vec{r} = (-1, 2, 2)$ and has velocity $\vec{v} = (3, 2, 1)$. What is the rate of change of the brightness as seen by the moth?
 - **a**. $-\frac{2}{3}$ **b**. $-\frac{2}{27}$ **c**. $-\frac{2}{81}$ **d**. $-\frac{3}{4}$ **e**. $\frac{15}{16}$

- **13**. (16 points) For the parametric curve $\vec{r}(t) = \left(\frac{2}{3}t, t^2, t^3\right)$ compute each of the following: **a**. velocity \vec{v}
 - **b**. speed $|\vec{v}|$ HINT: The quantity inside the square root is a perfect square.
 - c. arc length $L = \int_{(0,0,0)}^{(2,9,27)} ds$

- **d**. acceleration \vec{a}
- **e**. unit binormal \hat{B}

f. tangential acceleration a_T

14. (12 points) A wire has the shape of the parametric curve $\vec{r}(t) = \left(\frac{2}{3}t, t^2, t^3\right)$ between (0,0,0) and (2,9,27). Find the mass of the wire if the linear mass density is $\rho = yz$. Don't simplify the answer.

15. (12 points) A mass slides along a wire which has the shape of the parametric curve $\vec{r}(t) = \left(\frac{2}{3}t, t^2, t^3\right)$ between (0,0,0) and (2,9,27) under the action of the force $\vec{F} = (3z, 2y, x)$. Find the work done by the force.