Name_____ ID____

MATH 251

Final Exam

Fall 2015

Sections 512

Version B Solutions P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-10	/50
11	/30
12	/ 5
13	/20
Total	/105

- 1. A triangle has vertices A = (2,2,1), B = (3,4,2) and C = (2,5,4). Find its area.
 - **a**. $\frac{3}{2}$
 - **b**. $\frac{3}{2}\sqrt{3}$ Correct Choice
 - **c**. $\sqrt{3}$
 - **d**. $3\sqrt{3}$
 - **e**. 3

Solution: $\overrightarrow{AB} = (1,2,1)$ $\overrightarrow{AC} = (0,3,3)$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 0 & 3 & 3 \end{vmatrix} = 3\hat{i} - 3j + 3k \qquad A = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{3^2 + 3^2 + 3^2} = \frac{3}{2} \sqrt{3}$$

- **2**. Find the tangent plane to the graph of $z = x^3y + y^3x^2$ at (x,y) = (1,2). Where does it cross the *z*-axis?
 - a. -38 Correct Choice
 - **b**. -14
 - **c**. -10
 - **d**. 10
 - **e**. 38

Solution: $f(x,y) = x^3y + y^3x^2$ f(1,2) = 10

$$f_x(x,y) = 3x^2y + 2y^3x$$
 $f_x(1,2) = 22$

$$f_y(x,y) = x^3 + 3y^2x^2$$
 $f_y(1,2) = 13$

$$z = f_{tan}(x, y) = f(1, 2) + f_x(1, 2)(x - 1) + f_y(1, 2)(y - 2) = 10 + 22(x - 1) + 13(y - 2)$$

z-intercept =
$$f_{tan}(0,0) = 10 + 22(-1) + 13(-2) = -38$$

3. Find the tangent plane to the graph of hyperbolic paraboloid

$$-4(x-3)^2 - 4(y-1)^2 + 9(z-2)^2 = 1$$

at the point (4,2,1). Where does it cross the *z*-axis?

- **a**. $-\frac{11}{9}$
- **b**. $-\frac{11}{3}$
- $\mathbf{c}. 0$
- **d**. $\frac{11}{3}$ Correct Choice
- **e**. $\frac{11}{9}$

Solution:
$$P = (4,2,1)$$
 $F = -4(x-3)^2 - 4(y-1)^2 + 9(z-2)^2$ $\vec{\nabla} F = (-8(x-3), -8(y-1), 18(z-2))$ $\vec{N} = \vec{\nabla} F \Big|_P = (-8, -8, -18)$ $\vec{N} \cdot X = \vec{N} \cdot P$ $-8x - 8y - 18z = -32 - 16 - 18 = -66$ z-intercept at $x = y = 0$: $-18z = -66$ $z = \frac{66}{18} = \frac{11}{3}$

4. Queen Lean is flying the Millenium Eagle through the galaxy. Her current galactic position is P = (4,3,1) lightyears and her current velocity is $\vec{v} = \langle 0.1,0.2,0.3 \rangle$ lightyears/year. She is passing through a deadly polaron field whose density δ is related to the dark energy intensity I and the dark matter pressure P by $\delta = IP$.

She measures the dark energy intensity and its gradient are currently

$$I = 7$$
 lumens and $\vec{\nabla} I = \langle 2, 3, 1 \rangle$ lumens /lightyear

She measures the dark matter pressure and its gradient are currently

$$P = 0.8$$
 dynes/lightyear² and $\vec{\nabla}P = \langle 0.4, 0.1, 0.2 \rangle$ dynes/lightyear³

At what rate does she see the polaron density changing?

a.
$$\frac{d\delta}{dt} = -7.724$$

b.
$$\frac{d\delta}{dt} = -1.22$$

c.
$$\frac{d\delta}{dt} = -1.06$$

d.
$$\frac{d\delta}{dt} = 1.06$$
 Correct Choice

e.
$$\frac{d\delta}{dt} = 7.724$$

Solution:

$$\frac{dI}{dt} = \overrightarrow{\nabla}I \cdot \overrightarrow{v} = \langle 2, 3, 1 \rangle \cdot \langle 0.1, 0.2, 0.3 \rangle = .2 + .6 + .3 = 1.1$$

$$\frac{dP}{dt} = \overrightarrow{\nabla}P \cdot \overrightarrow{v} = \langle 0.4, 0.1, 0.2 \rangle \cdot \langle 0.1, 0.2, 0.3 \rangle = .04 + .02 + .06 = .12$$

$$\frac{d\delta}{dt} = \frac{\partial \delta}{\partial I} \frac{dI}{dt} + \frac{\partial \delta}{\partial P} \frac{dP}{dt} = P \frac{dI}{dt} + I \frac{dP}{dt} = 0.2 \cdot 1.1 + 7 \cdot .12 = 1.06$$

5. Sketch the region of integration for the integral $\int_0^2 \int_y^{\sqrt{8-y^2}} e^{x^2+y^2} dx dy$ in problem (12),

then select its value here:

a.
$$\frac{\pi}{4}(e^8-1)$$

b.
$$\frac{\pi}{8}(e^{16}-1)$$

c.
$$\frac{\pi}{8}(e^8-1)$$
 Correct Choice

d.
$$\frac{\pi}{16}(e^{16}-1)$$

e.
$$\frac{\pi}{16}(e^8-1)$$

Solution: Switch to polar coordinates:

$$\int_0^{\pi/4} \int_0^{2\sqrt{2}} e^{r^2} r dr d\theta = \left[\theta\right]_0^{\pi/4} \left[\frac{1}{2}e^{r^2}\right]_0^{2\sqrt{2}}$$
$$= \left(\frac{\pi}{4}\right) \frac{1}{2} (e^8 - 1) = \frac{\pi}{8} (e^8 - 1)$$

6. The surface of the Death star is a sphere of radius 2 with a hole cut out of one end, which we will take as centered at the south pole. It may be parametrized by

$$R(\phi, \theta) = (2\sin\phi\cos\theta, 2\sin\phi\sin\theta, 2\cos\phi)$$

for $0 \le \phi \le \frac{2\pi}{3}$. Find the surface area.

a.
$$A = \pi$$

b.
$$A = 2\pi$$

c.
$$A = 3\pi$$

$$d. A = 6\pi$$

e.
$$A = 12\pi$$
 Correct Choice

Solution: We first find the normal and its length:

$$\vec{e}_{\phi} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ (2\cos\phi\cos\theta & 2\cos\phi\sin\theta & -2\sin\phi) \\ \vec{e}_{\theta} = \end{vmatrix} (-2\sin\phi\sin\theta & 2\sin\phi\cos\theta & 0)$$

 $\vec{N} = \vec{e}_{\phi} \times \vec{e}_{\theta} = \hat{\imath}(4\sin^2\phi\cos\theta) - \hat{\jmath}(-4\sin^2\phi\sin\theta) + \hat{k}(4\sin\phi\cos\phi\cos^2\theta - -4\sin\phi\cos\phi\sin^2\theta)$ $= \langle 4\sin^2\phi\cos\theta, 4\sin^2\phi\sin\theta, 4\sin\phi\cos\phi \rangle$

$$\left| \vec{N} \right| = \sqrt{\left(4 \sin^2 \phi \cos \theta \right)^2 + \left(4 \sin^2 \phi \sin \theta \right)^2 + \left(4 \sin \phi \cos \phi \right)^2}$$
$$= \sqrt{16 \sin^4 \phi + 16 \sin^2 \phi \cos^2 \phi} = 4 \sin \phi$$

The surface area is

$$A = \iint 1 \, dS = \int_0^{2\pi} \int_0^{2\pi/3} 4 \sin\phi \, d\phi \, d\theta = 2\pi [-\cos\phi]_0^{2\pi/3}$$
$$= 8\pi \left(-\cos\frac{2\pi}{3} - -\cos0\right) = 8\pi \left(-\frac{1}{2} + 1\right) = 12\pi$$

- 7. Consider the solid below the cone given in cylindrical coordinates by z = 4 r above the xy-plane. Its temperature is T = z. Find its average temperature.
 - \mathbf{a} . π
 - **b**. 1 Correct Choice
 - **c**. $\frac{1}{2}$
 - **d**. $\frac{32\pi}{3}$
 - **e**. $\frac{64\pi}{3}$

Solution: The volume is

$$V = \int_0^4 \int_0^{2\pi} \int_0^{4-r} 1 r dz d\theta dr = 2\pi \int_0^4 [rz]_0^{4-r} dr = 2\pi \int_0^4 4r - r^2 dr$$
$$= 2\pi \left[2r^2 - \frac{r^3}{3} \right]_0^4 = 2\pi \left(32 - \frac{64}{3} \right) = \frac{64\pi}{3}$$

The integral of the temperature, T = z, is

$$\iiint T dV = \int_0^4 \int_0^{2\pi} \int_0^{4-r} z r dz d\theta dr = 2\pi \int_0^4 \left[r \frac{z^2}{2} \right]_0^{4-r} dr = \pi \int_0^4 r (4-r)^2 dr$$

$$= \pi \int_0^4 (16r - 8r^2 + r^3) dr = \pi \left[8r^2 - 8 \frac{r^3}{3} + \frac{r^4}{4} \right]_0^4 = \pi \left(8 \cdot 4^2 - 8 \frac{4^3}{3} + \frac{4^4}{4} \right)$$

$$= \pi 4^3 \left(2 - 8 \frac{1}{3} + 1 \right) = \frac{64}{3} \pi$$

So the average temperature is

$$T_{\text{ave}} = \frac{1}{V} \iiint T dV = 1$$

8. Compute $\oint_{\partial R} \vec{\nabla} f \cdot d\vec{s}$ for $f = xe^y$

counterclockwise around

the polar curve

$$r = 3 + \cos(4\theta)$$

shown at the right.

Hint: Use a Theorem.

- a. 0 Correct Choice
- **b**. $3e^4$
- **c**. $4e^3$
- **d**. $3e^3 4e^4$
- **e**. $4e^4 3e^3$

Solution: By the FTCC, $\oint_{\partial R} \vec{\nabla} f \cdot d\vec{s} = f(B) - f(A) = 0$ because B = A no matter what point you start at.

9. Compute $\oint_{\partial P} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (8x^3 + 5y, x - 5y^4)$

counterclockwise around the complete boundary of the plus sign shown at the right.

Hint: Use a Theorem.

- **a**. -20
- **b**. -40
- c. -80 Correct Choice
- **d**. 20
- **e**. 80

Solution: $P = 8x^3 + 5y$ $Q = x - 5y^4$ $\partial_x Q - \partial_y P = 1 - 5 = -4$ By Green's Theorem,

$$\oint_{\partial R} \vec{F} \cdot d\vec{s} = \iint_{R} (\partial_x Q - \partial_y P) dx dy = \iint_{R} -4 dx dy = -4 \text{(area)} = -4(20) = -80$$

10. Compute $\iint_{\partial V} \vec{F} \cdot d\vec{S}$ over the complete surface of the hemisphere $0 \le z \le \sqrt{4 - x^2 - y^2}$ oriented outward, for $\vec{F} = \left(x^3 z, y^3 z, \frac{3}{4} z^4\right)$

Hint: Use a Theorem.

a.
$$-128\pi$$

b.
$$-64\pi$$

c.
$$-32\pi$$

d.
$$32\pi$$
 Correct Choice

e.
$$64\pi$$

Solution: By Gauss' Theorem $\iint_{\partial H} \vec{F} \cdot d\vec{S} = \iiint_{H} \vec{\nabla} \cdot \vec{F} dV$. The divergence is

 $\vec{\nabla} \cdot \vec{F} = 3x^2z + 3y^2z + 3z^3 = 3z(x^2 + y^2 + z^2) = 3\rho^3 \cos \phi$ and the volume element is $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$. So the integral is:

$$\iiint_{H} \vec{\nabla} \cdot \vec{F} dV = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2} 3\rho^{3} \cos \phi \, \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= 2\pi \left[\frac{\sin^{2} \phi}{2} \right]_{0}^{\pi/2} \left[3 \frac{\rho^{6}}{6} \right]_{0}^{2} = 2^{5} \pi = 32\pi$$

11. (30 points) Verify Stokes' Theorem
$$\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial P} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F} = (yz^2, -xz^2, z^3)$ and the surface of the paraboloid $z = x^2 + y^2$ for $z \le 4$, oriented down and out.

Be careful with orientations. Use the following steps:

Left Hand Side:

The paraboloid, P, may be parametrized as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$

$$\vec{e}_r = (\cos \theta, \sin \theta, 2r$$

 $\vec{e}_\theta = (-r\sin \theta, r\cos \theta, 0)$

$$\vec{N} = \hat{\imath}(-2r^2\cos\theta) - \hat{\jmath}(-2r^2\sin\theta) + \hat{k}(r\cos^2\theta - r\sin^2\theta) = (-2r^2\cos\theta, -2r^2\sin\theta, r)$$

This is oriented up and in. Need down and out. Reverse: $\vec{N} = (2r^2\cos\theta, 2r^2\sin\theta, -r)$

c. Compute the curl of the vector field
$$\vec{F} = (yz^2, -xz^2, z^3)$$
:

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ yz^{2} & -xz^{2} & z^{3} \end{vmatrix} = \hat{\imath}(0 - 2xz) - \hat{\jmath}(0 - 2yz) + \hat{k}(-z^{2} - z^{2}) = (2xz, 2yz, -2z^{2})$$

d. Evaluate the curl of \vec{F} on the paraboloid:

$$\vec{\nabla} \times \vec{F} \Big|_{\vec{R}(r\theta)} = (2r^3 \cos \theta, 2r^3 \sin \theta, -2r^4)$$

e. Compute the dot product of the curl of \vec{F} and the normal \vec{N} .

$$\vec{\nabla} \times \vec{F} \cdot \vec{N} = 4r^5 \cos^2 \theta + 4r^5 \sin^2 \theta + 2r^5 = 6r^5$$

f. Compute the left hand side:

$$\iint\limits_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \iint\limits_{P} \vec{\nabla} \times \vec{F} \cdot \vec{N} dr d\theta = \int_{0}^{2\pi} \int_{0}^{2} (6r^{5}) dr d\theta = 2\pi \left[r^{6} \right]_{0}^{2} = 128\pi$$

Right Hand Side:

g. Parametrize the circle, ∂C :

$$\vec{r}(\theta) = (2\cos\theta, 2\sin\theta, 4)$$

h. Find the tangent vector on the curve:

$$\vec{v} = (-2\sin\theta, 2\cos\theta, 0)$$

This is counterclockwise. Need clockwise. Reverse $\vec{v} = (2\sin\theta, -2\cos\theta, 0)$

i. Evaluate $\vec{F} = (yz^2, -xz^2, z^3)$ on the circle:

$$\vec{F}\big|_{\vec{r}(\theta)} = (32\sin\theta, -32\cos\theta, 64)$$

j. Compute the dot product of \vec{F} and the tangent vector \vec{v} :

$$\vec{F} \cdot \vec{v} = 64\sin^2\theta + 64\cos^2\theta = 64$$

k. Compute the right hand side:

$$\int_{\partial P} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_{0}^{2\pi} 64 d\theta = 128\pi \quad \text{which agrees with (f)}.$$

12. (5 points) Sketch the region of integration for the integral

$$\int_0^2 \int_y^{\sqrt{8-y^2}} e^{x^2+y^2} \, dx \, dy.$$

You computed its value in problem (5).

- **13**. Duke Skywater is flying the Millenium Eagle through the galaxy. His current galactic position is P = (4,4,1) lightyears. He is passing through a deadly polaron field whose density is $\delta = xy z^2$ polarons/lightyear³.
 - **a**. If his current velocity is $\vec{v} = \langle 0.3, 0.2, 0.1 \rangle$ lightyears/year, at what rate does he see the polaron density changing?

Solution: $\vec{\nabla} \delta = (y, x, -2z)$ $\vec{\nabla} \delta \Big|_P = (4, 4, -2)$

$$\frac{d\delta}{dt} = \vec{v} \cdot \vec{\nabla} \delta \Big|_{P} = 0.3 \cdot 4 + 0.2 \cdot 4 - 0.1 \cdot 2 = 1.8$$
 polarons/lightyear³/year.

b. Duke decides to change his velocity to get out of the polaron field. If the Millenium Eagle's maximum speed is 0.9 lightyears/year, with what velocity should Duke travel to reduce the polaron's density as fast as possible?

Solution: The direction of maximum increase is $\vec{\nabla}\delta \Big|_{p} = (4,4,-2)$.

The direction of maximum decrease is $-\vec{\nabla}\delta\Big|_{P} = (-4, -4, 2)$.

The length is $\left| \vec{\nabla} \delta \right|_P = \sqrt{16 + 16 + 4} = 6$.

So the unit vector of maximum decrease is $\hat{v} = \frac{-\vec{\nabla}\delta\big|_P}{\left|\vec{\nabla}\delta\big|_P\right|} = \frac{1}{6}(-4, -4, 2) = \left(-\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right).$

Since the maximum speed is $|\vec{v}| = 0.9$, Duke's velocity should be $\vec{v} = |\vec{v}|\hat{v} = 0.9\left(-\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) = (-0.6, -0.6, 0.3)$.