			1-9	
251 Exan	n 1B	Fall 2016	10	
ns 504 Solut	tions	P. Yasskin		
			11	
ultiple Choice: (7 points each. No part credit.)			Total	

1. Find the distance from the point $\langle 3, 4, 12 \rangle$ to the sphere $x^2 + y^2 + z^2 = 36$.

- **a**. 1
- **b**. 6
- **c**. 7 Correct
- **d**. 13
- **e**. 105

Solution: The distance from (3,4,12) to the origin is $\sqrt{3^2 + 4^2 + 12^2} = 13$. The radius of the sphere is R = 6. So the point is 7 units outside the sphere.

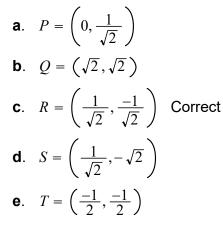
2. Find *a* and *b* so that a(1,2) - b(2,1) = (0,3). What is a + b?

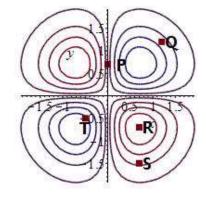
- **a**. 1
- **b**. 2
- c. 3 Correct
- **d**. 4
- **e**. 5

Solution: a - 2b = 0 2a - b = 3

The 1st equation says a = 2b. So the 2nd equation says 4b - b = 3 or b = 1 and a = 2. So a + b = 3.

3. In the plot at the right, which point could be a local maximum?





Solution: Near a local maximum, the contours form circles around the local maximum. So *R* is the local maximum.

- **4**. Find a vector perpendicular to the plane thru the points P = (2,3,-1), Q = (4,-1,0) and R = (2,0,2).
 - **a**. ⟨9,−6,−6⟩
 - **b**. $\langle -9, 5, 5 \rangle$
 - **c**. $\langle -9, -5, 5 \rangle$
 - **d**. $\langle -9, -6, -6 \rangle$ Correct
 - **e**. $\langle -9, 6, -6 \rangle$

Solution:
$$\overrightarrow{PQ} = Q - P = \langle 2, -4, 1 \rangle$$
 $\overrightarrow{PR} = R - P = \langle 0, -3, 3 \rangle$ and
 $\vec{N} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 1 \\ 0 & -3 & 3 \end{vmatrix} = \hat{i}(-12 + 3) - \hat{j}(6 - 0) + \hat{k}(-6 - 0) = \langle -9, -6, -6 \rangle$

- **5**. A triangle has vertices at P = (-2, 1, 0), Q = (-1, 1, 1) and R = (1, 3, 1). Find the angle at Q.
 - **a**. 30°
 - **b**. 45°
 - **c**. 60°
 - **d**. 120° Correct
 - **e**. 135°

Solution:
$$\overrightarrow{QP} = (-1, 0, -1)$$
 $\overrightarrow{QR} = (2, 2, 0)$ $\left| \overrightarrow{QP} \right| = \sqrt{2}$ $\left| \overrightarrow{QR} \right| = \sqrt{8} = 2\sqrt{2}$
 $\overrightarrow{QP} \cdot \overrightarrow{QR} = -2$ $\cos\theta = \frac{\overrightarrow{QP} \cdot \overrightarrow{QR}}{\left| \overrightarrow{QP} \right| \left| \overrightarrow{QR} \right|} = \frac{-2}{\sqrt{2} 2\sqrt{2}} = \frac{-1}{2}$ $\theta = 120^{\circ}$

- 6. Find the plane tangent to the graph of the function $z = f(x,y) = x^2 \sin(y) x \cos(y)$ at the point $(x,y) = (2,\pi)$. Its *z*-intercept is
 - **a**. -4π
 - **b**. -2π
 - **c**. 2
 - **d**. 2π
 - **e**. 4π Correct

Solution:
$$f(2,\pi) = 4\sin(\pi) - 2\cos(\pi) = 2$$

 $f_x(x,y) = 2x\sin(y) - \cos(y)$ $f_x(2,\pi) = 4\sin(\pi) - \cos(\pi) = 1$
 $f_y(x,y) = x^2\cos(y) + x\sin(y)$ $f_y(2,\pi) = 4\cos(\pi) + 2\sin(\pi) = -4$
 $z = f(2,\pi) + f_x(2,\pi)(x-2) + f_y(2,\pi)(y-\pi) = 2 + 1(x-2) - 4(y-\pi) = x - 4y + 4\pi$

- 7. A plane is flying from EAST to WEST, directly over the equator at a constant altitude of 100 kilometers above sea level. (Since the Earth is a sphere, the path of the plane is part of a great circle.) In what direction do \hat{N} and \hat{B} point?
 - **a**. \hat{N} points SOUTH and \hat{B} points DOWN
 - **b**. \hat{N} points SOUTH and \hat{B} points UP
 - c. \hat{N} points DOWN and \hat{B} points NORTH
 - **d**. \hat{N} points DOWN and \hat{B} points SOUTH Correct
 - e. \hat{N} points UP and \hat{B} points NORTH

Solution: \hat{T} points WEST. Since the path is a circle the aceleration points toward the center. So \hat{N} points toward the center of the Earth which is DOWN. $\hat{B} = \hat{T} \times \hat{N}$ which points SOUTH.

- 8. Find the mass of a wire in the shape of the semi-circle $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta)$ for $0 \le \theta \le \pi$ if the linear density is given by $\delta = y$.
 - **a**. 18 Correct
 - **b**. 12
 - **c**. 6
 - **d**. 3π
 - **e**. π

Solution: The tangent vector is $\vec{v} = (-3\sin\theta, 3\cos\theta)$ and its length is $|\vec{v}| = \sqrt{9\sin^2\theta + 9\cos^2\theta} = 3$. The density along the curve is $\delta(\vec{r}(t)) = 3\sin\theta$. So the mass is:

 $M = \int_{0}^{\pi} \delta \, ds = \int_{0}^{\pi} \delta(\vec{r}(t)) \, |\vec{v}| \, d\theta = \int_{0}^{\pi} 3\sin\theta \, 3 \, d\theta = \left[-9\cos\theta\right]_{0}^{\pi} = 9 - -9 = 18.$

- **9**. A bead is pushed along a wire in the shape of the twisted cubic $\vec{r}(t) = (t^3, t^2, t)$ by the force $\vec{F} = \langle z^3, yz^2, xz^2 \rangle$ from (1,1,1) to (8,4,2). Find the work done.
 - **a**. 186
 - **b**. $\frac{384}{7}$
 - **c**. $\frac{381}{7}$

 - d. 63 Correct
 - **e**. 64

Solution:
$$\vec{v} = \langle 3t^2, 2t, 1 \rangle$$
 $\vec{F}(\vec{r}(t)) = \langle t^3, t^4, t^5 \rangle$ $\vec{F} \cdot \vec{v} = 3t^5 + 2t^5 + t^5 = 6t^5$
 $W = \int \vec{F} \cdot d\vec{s} = \int_1^2 \vec{F} \cdot \vec{v} dt = \int_1^2 6t^5 dt = [t^6]_1^2 = 64 - 1 = 63$

10. Find a parametric equation for the line of intersection of the two planes

2x + y + 3z = 7 and 3x - y + 2z = 3

HINTS: Find the normal vectors, \vec{N}_1 and \vec{N}_2 , to the 2 planes, the direction vector, \vec{v} , of the line of intersection and any one point, *P*, on the intersection.

Solution: The normals are $\vec{N}_1 = \langle 2, 1, 3 \rangle$ and $\vec{N}_2 = \langle 3, -1, 2 \rangle$. The direction vector is $\vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & -1 & 2 \end{vmatrix} = \hat{i}(2+3) - \hat{j}(4-9) + \hat{k}(-2-3) = \langle 5, 5, -5 \rangle$ We look for a point with z = 0. So we solve 2x + y = 7 and 3x - y = 3. The sum is 5x = 10. So x = 2. Then the first equation gives 4 + y = 7. So y = 3. So a point of intersection is P = (2,3,0). Then the line is $X = P + t\vec{v}$ or $(x,y,z) = (2,3,0) + t\langle 5,5,-5 \rangle$ or (x,y,z) = (2+5t,3+5t,-5t)or x = 2 + 5t, y = 3 + 5t, z = -5t

11. As Duke Skywater flies the Century Eagle through the galaxy he wants to maximize the Power of the Force which is given by $F = \frac{1}{D}$ where *D* is the dark matter density given by $D = x^2 + y^2 + z^2$. If his current position is $\vec{r} = (2, 1, 1)$ and his current velocity is $\vec{v} = (0.6, -0.2, 0.8)$, what is the current rate of change of the Power of the Force, $\frac{dF}{dt}$?

(Plug in numbers but you don't need to simplify.)

Solution: The position says x = 2, y = 1, z = 1. The velocity says $\frac{dx}{dt} = 0.6$, $\frac{dy}{dt} = -0.2$, $\frac{dz}{dt} = 0.8$. Currently $D = x^2 + y^2 + z^2 = 2^2 + 1^2 + 1^2 = 6$. We use the chain rule twice: $\frac{dF}{dt} = \frac{dF}{dD}\frac{dD}{dt} = \frac{dF}{dD}\left(\frac{\partial D}{\partial x}\frac{dx}{dt} + \frac{\partial D}{\partial y}\frac{dy}{dt} + \frac{\partial D}{\partial z}\frac{dz}{dt}\right) = \frac{-1}{D^2}\left(2x\frac{dx}{dt} + 2y\frac{dy}{dt} + 2z\frac{dz}{dt}\right)$ $= \frac{-1}{36}(2 \cdot 2 \cdot (0.6) + 2 \cdot 1 \cdot (-0.2) + 2 \cdot 1 \cdot (0.8)) = \frac{-3.6}{36} = -0.1$