Name \qquad
MATH 251
Exam 1B
Fall 2016
Sections 504
Solutions
P. Yasskin

Multiple Choice: (7 points each. No part credit.)

$1-9$	$/ 63$
10	$/ 20$
11	$/ 20$
Total	$/ 103$

1. Find the distance from the point $\langle 3,4,12\rangle$ to the sphere $x^{2}+y^{2}+z^{2}=36$.
a. 1
b. 6
c. 7 Correct
d. 13
e. 105

Solution: The distance from $\langle 3,4,12\rangle$ to the origin is $\sqrt{3^{2}+4^{2}+12^{2}}=13$. The radius of the sphere is $R=6$. So the point is 7 units outside the sphere.
2. Find a and b so that $a(1,2)-b(2,1)=(0,3)$. What is $a+b$?
a. 1
b. 2
c. 3 Correct
d. 4
e. 5

Solution: $a-2 b=0 \quad 2 a-b=3$
The $1^{\text {st }}$ equation says $a=2 b$. So the $2^{\text {nd }}$ equation says $4 b-b=3$ or $b=1$ and $a=2$. So $\quad a+b=3$.
3. In the plot at the right, which point could be a local maximum?
a. $\quad P=\left(0, \frac{1}{\sqrt{2}}\right)$
b. $Q=(\sqrt{2}, \sqrt{2})$
c. $R=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ Correct
d. $S=\left(\frac{1}{\sqrt{2}},-\sqrt{2}\right)$

e. $T=\left(\frac{-1}{2}, \frac{-1}{2}\right)$

Solution: Near a local maximum, the contours form circles around the local maximum. So R is the local maximum.
4. Find a vector perpendicular to the plane thru the points $P=(2,3,-1), \quad Q=(4,-1,0)$ and $R=(2,0,2)$.
a. $\langle 9,-6,-6\rangle$
b. $\langle-9,5,5\rangle$
c. $\langle-9,-5,5\rangle$
d. $\langle-9,-6,-6\rangle$ Correct
e. $\langle-9,6,-6\rangle$

Solution: $\overrightarrow{P Q}=Q-P=\langle 2,-4,1\rangle \quad \overrightarrow{P R}=R-P=\langle 0,-3,3\rangle$ and
$\vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -4 & 1 \\ 0 & -3 & 3\end{array}\right|=\hat{\imath}(-12+3)-\hat{\jmath}(6-0)+\hat{k}(-6-0)=\langle-9,-6,-6\rangle$
5. A triangle has vertices at $P=(-2,1,0), Q=(-1,1,1)$ and $R=(1,3,1)$. Find the angle at Q.
a. 30°
b. 45°
c. 60°
d. 120° Correct
e. 135°

Solution: $\overrightarrow{Q P}=(-1,0,-1) \quad \overrightarrow{Q R}=(2,2,0) \quad|\overrightarrow{Q P}|=\sqrt{2} \quad|\overrightarrow{Q R}|=\sqrt{8}=2 \sqrt{2}$ $\overrightarrow{Q P} \cdot \overrightarrow{Q R}=-2 \quad \cos \theta=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{-2}{\sqrt{2} 2 \sqrt{2}}=\frac{-1}{2} \quad \theta=120^{\circ}$
6. Find the plane tangent to the graph of the function $z=f(x, y)=x^{2} \sin (y)-x \cos (y)$ at the point $(x, y)=(2, \pi)$. Its z-intercept is
a. -4π
b. -2π
c. 2
d. 2π
e. 4π Correct

Solution: $f(2, \pi)=4 \sin (\pi)-2 \cos (\pi)=2$

$$
\begin{aligned}
& f_{x}(x, y)=2 x \sin (y)-\cos (y) \quad f_{x}(2, \pi)=4 \sin (\pi)-\cos (\pi)=1 \\
& f_{y}(x, y)=x^{2} \cos (y)+x \sin (y) \quad f_{y}(2, \pi)=4 \cos (\pi)+2 \sin (\pi)=-4 \\
& z=f(2, \pi)+f_{x}(2, \pi)(x-2)+f_{y}(2, \pi)(y-\pi)=2+1(x-2)-4(y-\pi)=x-4 y+4 \pi
\end{aligned}
$$

7. A plane is flying from EAST to WEST, directly over the equator at a constant altitude of 100 kilometers above sea level. (Since the Earth is a sphere, the path of the plane is part of a great circle.) In what direction do \hat{N} and \hat{B} point?
a. \hat{N} points SOUTH and \hat{B} points DOWN
b. \hat{N} points SOUTH and \hat{B} points UP
c. \hat{N} points DOWN and \hat{B} points NORTH
d. \hat{N} points DOWN and \hat{B} points SOUTH Correct
e. \hat{N} points UP and \hat{B} points NORTH

Solution: \hat{T} points WEST. Since the path is a circle the aceleration points toward the center. So \hat{N} points toward the center of the Earth which is DOWN. $\hat{B}=\hat{T} \times \hat{N}$ which points SOUTH.
8. Find the mass of a wire in the shape of the semi-circle $\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta)$ for $0 \leq \theta \leq \pi$ if the linear density is given by $\delta=y$.
a. 18 Correct
b. 12
c. 6
d. 3π
e. π

Solution: The tangent vector is $\vec{v}=(-3 \sin \theta, 3 \cos \theta)$ and its length is $|\vec{v}|=\sqrt{9 \sin ^{2} \theta+9 \cos ^{2} \theta}=3$. The density along the curve is $\delta(\vec{r}(t))=3 \sin \theta$. So the mass is:
$M=\int_{0}^{\pi} \delta d s=\int_{0}^{\pi} \delta(\vec{r}(t))|\vec{v}| d \theta=\int_{0}^{\pi} 3 \sin \theta 3 d \theta=[-9 \cos \theta]_{0}^{\pi}=9--9=18$.
9. A bead is pushed along a wire in the shape of the twisted cubic $\vec{r}(t)=\left(t^{3}, t^{2}, t\right)$ by the force $\vec{F}=\left\langle z^{3}, y z^{2}, x z^{2}\right\rangle$ from $(1,1,1)$ to $(8,4,2)$. Find the work done.
a. 186
b. $\frac{384}{7}$
c. $\frac{381}{7}$
d. 63 Correct
e. 64

Solution: $\vec{v}=\left\langle 3 t^{2}, 2 t, 1\right\rangle \quad \vec{F}(\vec{r}(t))=\left\langle t^{3}, t^{4}, t^{5}\right\rangle \quad \vec{F} \cdot \vec{v}=3 t^{5}+2 t^{5}+t^{5}=6 t^{5}$
$W=\int \vec{F} \cdot d \vec{s}=\int_{1}^{2} \vec{F} \cdot \vec{v} d t=\int_{1}^{2} 6 t^{5} d t=\left[t^{6}\right]_{1}^{2}=64-1=63$
10. Find a parametric equation for the line of intersection of the two planes

$$
2 x+y+3 z=7 \quad \text { and } \quad 3 x-y+2 z=3
$$

HINTS: Find the normal vectors, \vec{N}_{1} and \vec{N}_{2}, to the 2 planes, the direction vector, \vec{v}, of the line of intersection and any one point, P, on the intersection.

Solution: The normals are $\vec{N}_{1}=\langle 2,1,3\rangle$ and $\vec{N}_{2}=\langle 3,-1,2\rangle$. The direction vector is
$\vec{v}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 1 & 3 \\ 3 & -1 & 2\end{array}\right|=\hat{\imath}(2+3)-\hat{\jmath}(4-9)+\hat{k}(-2-3)=\langle 5,5,-5\rangle$
We look for a point with $z=0$. So we solve $2 x+y=7$ and $3 x-y=3$.
The sum is $5 x=10$. So $x=2$. Then the first equation gives $4+y=7$. So $y=3$.
So a point of intersection is $P=(2,3,0)$. Then the line is
$X=P+\overrightarrow{t v}$ or $(x, y, z)=(2,3,0)+t\langle 5,5,-5\rangle$ or $(x, y, z)=(2+5 t, 3+5 t,-5 t)$ or $x=2+5 t, \quad y=3+5 t, \quad z=-5 t$
11. As Duke Skywater flies the Century Eagle through the galaxy he wants to maximize the Power of the Force which is given by $F=\frac{1}{D}$ where D is the dark matter density given by $D=x^{2}+y^{2}+z^{2}$. If his current position is $\vec{r}=(2,1,1)$ and his current velocity is $\vec{v}=(0.6,-0.2,0.8)$, what is the current rate of change of the Power of the Force, $\frac{d F}{d t}$?
(Plug in numbers but you don't need to simplify.)
Solution: The position says $x=2, \quad y=1, \quad z=1$.
The velocity says $\frac{d x}{d t}=0.6, \quad \frac{d y}{d t}=-0.2, \quad \frac{d z}{d t}=0.8$.
Currently $D=x^{2}+y^{2}+z^{2}=2^{2}+1^{2}+1^{2}=6$.
We use the chain rule twice:

$$
\begin{aligned}
\frac{d F}{d t} & =\frac{d F}{d D} \frac{d D}{d t}=\frac{d F}{d D}\left(\frac{\partial D}{\partial x} \frac{d x}{d t}+\frac{\partial D}{\partial y} \frac{d y}{d t}+\frac{\partial D}{\partial z} \frac{d z}{d t}\right)=\frac{-1}{D^{2}}\left(2 x \frac{d x}{d t}+2 y \frac{d y}{d t}+2 z \frac{d z}{d t}\right) \\
& =\frac{-1}{36}(2 \cdot 2 \cdot(0.6)+2 \cdot 1 \cdot(-0.2)+2 \cdot 1 \cdot(0.8))=\frac{-3.6}{36}=-0.1
\end{aligned}
$$

