Name			1-13	/65	16	/10
MATH 251	Final Exam Version B	Fall 2016 P. Yasskin	14	/10	E.C.	/ 5
Sections 504			15	/20	Total	/110

Multiple Choice: (5 points each. No part credit.)

- **1**. Find the point where the line x = 3 t, y = 1 + 2t, z = 1 2t intersects the plane x 2y + z = -2. At this point x + y + z =
 - **a**. 0
 - **b**. 1
 - **c**. 2
 - **d**. 3
 - **e**. 4

2. Find the plane tangent to the graph of $z = x^2y^3$ at the point (2,1). The *z*-intercept is

- **a**. -24
- **b**. -16
- **c**. -4
- **d**. 0
- **e**. 4
- **3**. Find the line perpendicular to the cone $z^2 x^2 y^2 = 0$ at the point P = (4,3,5). This line intersects the *xy*-plane at
 - **a**. (3,4,0)
 - **b**. (-4,-3,0)
 - **c**. (8,6,0)
 - **d**. (-6,-8,0)
 - **e**. $\left(\frac{4}{5}, \frac{3}{5}, 0\right)$

- **4**. A box currently has length L = 20 cm which is increasing at 4 cm/sec, width W = 15 cm which is increasing at 2 cm/sec, and height H = 12 cm which is decreasing at 1 cm/sec. At what rate is the volume changing?
 - a. 3 cm³/sec
 - **b**. 7 cm³/sec
 - c. $540 \text{ cm}^3/\text{sec}$
 - **d**. $900 \text{ cm}^{3}/\text{sec}$
 - e. $3600 \text{ cm}^3/\text{sec}$
- 5. In order to hide from the Dark Invader, Duke Skywater flys the Millenium Eagle into a galactic dust storm. Currently, his position is P = (30, -20, 10) and his velocity is $\vec{v} = (-4, 3, 12)$. He measures that currently the dust density is $\rho = 450$ and its gradient is $\vec{\nabla}\rho = (2, -2, 1)$. Find the current rate of change of the dust density as seen by Duke.
 - **a**. -2
 - **b**. 2
 - **c**. 110
 - **d**. 448
 - **e**. 560
- 6. Under the same conditions as in #5, in what **unit** vector direction should Duke travel to **increase** the dust density as quickly as possible?
 - **a**. (-2, 2, -1)
 - **b**. (2,-2,1)
 - **c**. $\left(\frac{4}{13}, \frac{-3}{13}, \frac{-12}{13}\right)$
 - **d**. $\left(\frac{-4}{13}, \frac{3}{13}, \frac{12}{13}\right)$
 - **e**. $\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$

7. The point (-2,1) is a critical point of the function $f = \frac{2x - 4y - x^2y^2}{xy}$. Use the Second Derivative Test to classify the point.

- a. Local Minimum
- b. Local Maximum
- c. Inflection Point
- d. Saddle Point
- e. Test Fails
- **8**. Find the mass of the plate between y = 3x and $y = x^2$ if the surface density is $\delta = xy$.
 - **a**. $\frac{729}{16}$ b. $\frac{243}{8}$ c. $\frac{81}{8}$ d. $\frac{81}{4}$ e. $\frac{9}{2}$
- **9**. Find the *x*-component of the center of mass of the plate between y = 3x and $y = x^2$ if the surface density is $\delta = xy$.
 - **a**. $\frac{72}{35}$

 - **b.** $\frac{35}{72}$ **c.** $\frac{2187}{35}$ **d.** $\frac{35}{2172}$
 - **e**. $\frac{729}{35}$

10. Compute $\oint \vec{F} \cdot d\vec{s}$ counterclockwise around the rectangle $0 \le x \le 2\pi$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ for $\vec{F} = (y \cos x - \sin y, x \cos y + \sin x)$.

HINT: Use the Fundamental Theorem of Calculus for Curves or Green's Theorem.

- **a**. -16π
- **b**. -8π
- **c**. 0
- **d**. 8π
- **e**. 16π

11. Compute $\int_{(0,0,0)}^{(2,0,1)} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2x + y, x + 2y, 2z)$ along the curve $\vec{r}(t) = (t^2 + t^3, t^2 - t^3, \sqrt{t})$. HINT: Find a scalar potential.

- **a**. 1
- **b**. 3
- **c**. 5
- **d**. 7
- **e**. 9
- **12.** Compute $\iint \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ over the sphere $x^2 + y^2 + z^2 = 9$ with outward normal for $\vec{F} = (xy^2z, yz^2x, zx^2y)$.

HINT: Use Stokes' Theorem or Gauss' Theorem.

- **a**. 4π
- **b**. 12π
- **c**. $\frac{32}{3}\pi$
- **d**. $\frac{64}{3}\pi$
- **e**. 0

13. Compute $\iint \vec{F} \cdot d\vec{S}$ outward through the complete surface of the cylinder $x^2 + y^2 = 4$ for $1 \le z \le 4$ for $\vec{F} = (xz^2, yz^2, z^3)$. HINT: Use a Theorem.

- **a**. 840π
- **b**. 420π
- **c**. 252π
- **d**. 210π
- **e**. 126π

14. (10 points) Compute $\iint_D x \, dx \, dy$ over the "diamond shaped" region D in the first quadrant bounded by the parabolas $y = 16 - x^2$ $y = 8 - x^2$ $y = 4 + x^2$ and $y = x^2$

HINTS: Use the coordinates: $u = y + x^2$, $v = y - x^2$. Solve for x and y.

15. (20 points) Verify Stokes' Theorem $\iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial H} \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (y, -x, xz + yz)$ and the hemisphere $z = \sqrt{9 - x^2 - y^2}$ oriented up. Be sure to check the orientation. Use the following steps:

a. RHS: Parametrize the boundary curve and compute the line integral:

 $\vec{r}(\theta) =$

 $\vec{v}(\theta) =$

 $\vec{F}(\vec{r}(\theta)) =$

 $\oint_{\partial H} \vec{F} \cdot d\vec{s} =$

(continued)

b. LHS: Compute the surface integral using the parametrization:

 $\vec{R}(\varphi,\theta) = (3\sin\varphi\cos\theta, 3\sin\varphi\sin\theta, 3\cos\varphi)$

$$\vec{\nabla} \times \vec{F} =$$

$$\left[\vec{\nabla} \times \vec{F} \right]_{\vec{R}(\varphi,\theta)} =$$

 $\vec{e}_{\varphi} =$

 $\vec{e}_{\theta} =$

 $\vec{N} =$

$$\iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$$

16. (10 points) Find 3 positive numbers x, y and z, whose sum is 120 such that $f(x,y,z) = xy^2z^3$ is a maximum.

Solve either by Eliminating a Variable or by Lagrange Multipliers. 5 points extra credit for doing both. Clearly separate solutions.

METHOD 1: Lagrange Multipliers:

METHOD 2: Eliminate a Variable: