Name_____

MATH 251

Exam 2 Version A

Fall 2017

Sections 515

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-13	/65	15	/15
14	/15	16	/15
		Total	/110

1. Find the equation of the plane tangent to $z = x^2y + xy^2$ at (x,y) = (1,2). The *z*-intercept is:

a.
$$c = -6$$

b.
$$c = 6$$

c.
$$c = -12$$

d.
$$c = 12$$

e.
$$c = -24$$
So the z-intercept is $c = -12$.

2. Find the plane tangent to the ellipsoid $36x^2 + 9y^2 + 4z^2 = 108$ at the point (x,y,z) = (1,2,3).

a.
$$6x + 3y + 2z = 18$$

b.
$$\frac{x}{6} + \frac{y}{3} + \frac{z}{2} = \frac{7}{3}$$

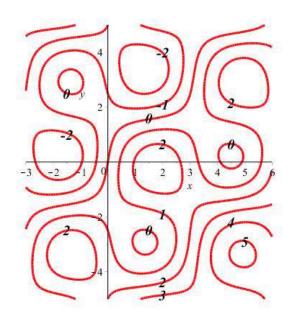
c.
$$6x + 12y + 18z = 84$$

d.
$$\frac{x}{6} + \frac{y}{12} + \frac{z}{18} = \frac{1}{2}$$

e.
$$36x + 9y + 4z = 18$$

- 3. If $f(x,y) = x\cos(y) + y\sin(x)$, which of the following is INCORRECT?
 - $a. f_x = \cos(y) + y\cos(x)$
 - **b**. $f_y = -x\sin(y) + \sin(x)$
 - $\mathbf{c}. \ f_{xx} = -y\sin(x)$
 - $\mathbf{d.} \ f_{xy} = \sin(y) + \cos(x)$
 - $e. f_{yx} = -\sin(y) + \cos(x)$
- **4.** A support beam is constructed using four struts whose lengths are w, x, y and z. The strength of the beam is $S = w^2x + y^2z$. If the current lengths are w = 1, x = 3, y = 2 and z = 1, then the current strength is $S = 1^23 + 2^21 = 7$. Use differentials (i.e. the linear approximation) to estimate how much the strength increases, ΔS , if the lengths increase by $\Delta w = 0.1$, $\Delta x = 0.2$, $\Delta y = 0.2$ and $\Delta z = 0.3$.
 - **a**. 3.5
 - **b**. 2.8
 - **c**. 2.1
 - **d**. 1.4
 - **e**. 0.8

- 5. In the coutour plot at the right, which point is the saddle point?
 - **a**. (1.5,3.5)
 - **b**. (5,-1)
 - **c**. (3.5, 1.5)
 - **d**. (5,-3.5)
 - **e**. (-1.5, -3.5)



- **6**. Use the linear approximation to the function $f(x,y) = \sqrt{x^2 + y^2}$ to estimate $\sqrt{3.9^2 + 3.2^2}$.
 - **a**. 5.73
 - **b**. 5.40
 - **c**. 5.10
 - **d**. 5.04
 - **e**. 5.02

7. A weather balloon is currently located at (x,y,z)=(20,30,10) and has velocity $\vec{v}=(3,1,2)$. At the current time, it measures that the pressure is P=.96 atm and has gradient

$$\vec{\nabla}P = \left\langle \frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z} \right\rangle = \langle .01, .02, .03 \rangle$$

Find the rate of change of the pressure as seen aboard the balloon.

- **a**. 0.12
- **b**. 0.11
- **c**. 0.10
- **d**. 0.09
- **e**. 0.08

- **8**. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta = xyz$. If Ham's current position is P = (1,1,2), find the rate of change of the density in the direction toward the point Q = (-1,3,3).
 - **a**. $\frac{1}{3}$
 - **b**. $\frac{2}{3}$
 - **c**. 1
 - **d**. $\frac{4}{3}$
 - **e**. $\frac{5}{3}$

- **9**. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta = xyz$. If Ham's current position is P = (1,1,2), in what unit vector direction should he travel to increase the cloaking sparkles as fast as possible?
 - **a.** $\left\langle -\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right\rangle$
 - **b**. $\left\langle \frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \right\rangle$
 - **c**. $\left\langle -\frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$
 - **d.** $\left\langle -\frac{2}{3}, \frac{2}{3}, -\frac{1}{3} \right\rangle$
 - **e**. $\left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$

10. If $\vec{F} = \langle x^2y, y^2z, z^2x \rangle$, then $\vec{\nabla} \cdot \vec{F} =$

a.
$$-y^2 - z^2 - x^2$$

b.
$$2xy + 2yz + 2zx$$

c.
$$2xy - 2yz + 2zx$$

d.
$$\langle 2xy, 2yz, 2zx \rangle$$

e.
$$\langle 2xy, -2yz, 2zx \rangle$$

11. If $\vec{F} = \langle x^2y, y^2z, z^2x \rangle$, then $\vec{\nabla} \times \vec{F} =$

a.
$$-y^2 + z^2 - x^2$$

b.
$$\langle -y^2, z^2, -x^2 \rangle$$

c.
$$\langle -y^2, -z^2, -x^2 \rangle$$

d.
$$\langle 2xy, 2yz, 2zx \rangle$$

e.
$$\langle 2xy, -2yz, 2zx \rangle$$

12. If $\vec{F} = \langle x^2y, y^2z, z^2x \rangle$, then $\vec{\nabla} \cdot \vec{\nabla} \times \vec{F} =$

a.
$$-y^2 - z^2 - x^2$$

b.
$$-y^2 + z^2 - x^2$$

c.
$$2y - 2z + 2x$$

d.
$$2y + 2z + 2x$$

e. 0

13. Find a scalar potential, f, for the vector field $\vec{F} = \langle yz + 6x, xz - 4y, xy \rangle$.

Then
$$f(2,2,2) - f(1,1,1) =$$

- **a**. 1
- **b**. 2
- **c**. 5
- **d**. 10
- **e**. 15

Work Out: (15 points each. Part credit possible. Show all work.)

14. (15 points) The Ideal Gas Law says the Pressure, P, Volume, V, and Temperature, T, are related by PV = kT. Currently, a particular sample of ideal gas has the parameters:

$$P = 0.9 \text{ atm}$$

$$V = 600 \text{ cm}^3$$

$$T = 270$$
°K

- **a**. First find the constant k.
- **b**. If the volume is increasing at $\frac{dV}{dt} = \frac{8 \text{ cm}^3}{\text{hr}}$ while the temperature is increasing

at
$$\frac{dT}{dt} = \frac{3^{\circ}K}{hr}$$
, at what rate, $\frac{dP}{dt}$, is the pressure changing?

Is the pressure increasing or decreasing?

15. (15 points) Find all critical points of the function $f(x,y) = x^3 - 12x + 3xy^2$. Then use the second derivative test to classify each as a local minimum, local maximum or saddle or say the test fails.

16. (15 points) Find the point on the plane 2x - 2y - z = 18 that is closest to the origin. You may use either the Eliminate a Variable method or the Lagrange Multiplier method.