Name_____

MATH 251	Exam 2 Version B	Fall 2017	1-13	/65	15	/15
					10	145
Sections 515		P. Yasskin	14	/15	16	/15
Multiple Choice: (5 points each. No part credit.)					Total	/110

Γ

٦

- **1**. Find the equation of the plane tangent to $z = x^2y + xy^2$ at (x,y) = (1,2). The *z*-intercept is:
 - **a**. *c* = −24
 - **b**. c = -12
 - **c**. *c* = 12
 - **d**. *c* = −6
 - **e**. *c* = 6

2. Find the plane tangent to the ellipsoid $36x^2 + 9y^2 + 4z^2 = 108$ at the point (x, y, z) = (1, 2, 3).

- **a**. 6x + 12y + 18z = 84
- **b**. $\frac{x}{6} + \frac{y}{12} + \frac{z}{18} = \frac{1}{2}$
- **c**. 6x + 3y + 2z = 18
- **d**. $\frac{x}{6} + \frac{y}{3} + \frac{z}{2} = \frac{7}{3}$
- **e**. 36x + 9y + 4z = 18

- **3**. If $f(x,y) = x\cos(y) + y\sin(x)$, which of the following is INCORRECT?
 - **a**. $f_x = \cos(y) + y\cos(x)$ **b**. $f_y = -x\sin(y) + \sin(x)$ **c**. $f_{xx} = -y\sin(x)$ **d**. $f_{xy} = -\sin(y) + \cos(x)$
 - **e**. $f_{yx} = \sin(y) + \cos(x)$
- **4**. A support beam is constructed using four struts whose lengths are w, x, y and z. The strength of the beam is $S = w^2x + y^2z$. If the current lengths are w = 1, x = 3, y = 2 and z = 1, then the current strength is $S = 1^23 + 2^21 = 7$. Use differentials (i.e. the linear approximation) to estimate how much the strength increases, ΔS , if the lengths increase by $\Delta w = 0.1$, $\Delta x = 0.2$, $\Delta y = 0.2$ and $\Delta z = 0.3$.
 - **a**. 0.8
 - **b**. 1.4
 - **c**. 2.1
 - **d**. 2.8
 - **e**. 3.5

- 5. In the coutour plot at the right, which point is the saddle point?
 - **a**. (3.5,1.5)
 - **b**. (5,-1)
 - **c**. (5,-3.5)
 - **d**. (1.5,3.5)
 - **e**. (-1.5,-3.5)

- **6**. Use the linear approximation to the function $f(x,y) = \sqrt{x^2 + y^2}$ to estimate $\sqrt{3.9^2 + 3.2^2}$.
 - **a**. 5.02
 - **b**. 5.04
 - **c**. 5.10
 - **d**. 5.40
 - **e**. 5.73

7. A weather balloon is currently located at (x, y, z) = (20, 30, 10) and has velocity $\vec{v} = (3, 1, 2)$. At the current time, it measures that the pressure is P = .96 atm and has gradient

$$\vec{\nabla}P = \left\langle \frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z} \right\rangle = \langle .01, .02, .03 \rangle$$

Find the rate of change of the pressure as seen aboard the balloon.

- **a**. 0.08
- **b**. 0.09
- **c**. 0.10
- **d**. 0.11
- **e**. 0.12

- 8. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta = xyz$. If Ham's current position is P = (1, 1, 2), find the rate of change of the density in the direction toward the point Q = (-1,3,3).
 - **a**. $\frac{5}{3}$
 - **b**. $\frac{4}{3}$

 - **c**. 1
 - **d**. $\frac{2}{3}$
 - **e**. $\frac{1}{3}$

9. Ham Duet is flying the Centurion Eagle through a nebula where the density of cloaking sparkles is $\delta = xyz$. If Ham's current position is P = (1, 1, 2), in what unit vector direction should he travel to increase the cloaking sparkles as fast as possible?

a.
$$\left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$$

b. $\left\langle -\frac{2}{3}, \frac{2}{3}, -\frac{1}{3} \right\rangle$
c. $\left\langle -\frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle$
d. $\left\langle \frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \right\rangle$
e. $\left\langle -\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right\rangle$

- **10.** If $\vec{F} = \langle x^2 y, y^2 z, z^2 x \rangle$, then $\vec{\nabla} \cdot \vec{F} =$
 - **a**. $-y^2 z^2 x^2$
 - **b**. 2xy 2yz + 2zx
 - **c**. 2xy + 2yz + 2zx
 - **d**. $\langle 2xy, -2yz, 2zx \rangle$
 - **e**. $\langle 2xy, 2yz, 2zx \rangle$
- **11.** If $\vec{F} = \langle x^2 y, y^2 z, z^2 x \rangle$, then $\vec{\nabla} \times \vec{F} =$ **a.** $-y^2 + z^2 - x^2$ **b.** $\langle 2xy, -2yz, 2zx \rangle$ **c.** $\langle 2xy, 2yz, 2zx \rangle$ **d.** $\langle -y^2, -z^2, -x^2 \rangle$
 - **e**. $\langle -y^2, z^2, -x^2 \rangle$
- **12.** If $\vec{F} = \langle x^2 y, y^2 z, z^2 x \rangle$, then $\vec{\nabla} \cdot \vec{\nabla} \times \vec{F} =$
 - **a**. $-y^2 + z^2 x^2$ **b**. $-y^2 - z^2 - x^2$ **c**. 2y + 2z + 2x **d**. 2y - 2z + 2x**e**. 0

13. Find a scalar potential, *f*, for the vector field $\vec{F} = \langle yz + 6x, xz - 4y, xy \rangle$. Then f(2,2,2) - f(1,1,1) =

- **a**. 15
- **b**. 10
- **c**. 5
- **d**. 2
- **e**. 1

Work Out: (15 points each. Part credit possible. Show all work.)

14. (15 points) The Ideal Gas Law says the Pressure, *P*, Volume, *V*, and Temperature, *T*, are related by PV = kT. Currently, a particular sample of ideal gas has the parameters:

P = 0.9 atm $V = 600 \text{ cm}^3$ and $T = 270^{\circ}\text{K}$

- **a**. First find the constant *k*.
- **b**. If the volume is increasing at $\frac{dV}{dt} = \frac{8 \text{ cm}^3}{\text{hr}}$ while the temperature is increasing
 - at $\frac{dT}{dt} = \frac{3^{\circ}K}{hr}$, at what rate, $\frac{dP}{dt}$, is the pressure changing?

Is the pressure increasing or decreasing?

15. (15 points) Find all critical points of the function $f(x,y) = x^3 - 12x + 3xy^2$. Then use the second derivative test to classify each as a local minimum, local maximum or saddle or say the test fails. **16**. (15 points) Find the point on the plane 2x - 2y - z = 18 that is closest to the origin. You may use either the Eliminate a Variable method or the Lagrange Multiplier method.