Name						
		F 11 2017	1-10	/50	13	/15
MATH 251	Final Exam Version B	Fall 2017				
Sections 515		P. Yasskin	11	/ 5	14	/15
Multiple Chaige: (5 paints each No part gradit)			12	/20	Total	/105
Multiple Choice. (5 points each. No part credit.)				120	Total	/105

1. A wire has the shape of the helix curve $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta, 3\theta)$ for $0 \le \theta \le \pi$ and has linear density $\delta = 2y$. Find the total mass of the wire.

- a. 80
- b. 60
- c. 40
- d. 20
- e. 10

- 2. A wire has the shape of the helix curve $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta, 3\theta)$ for $0 \le \theta \le \pi$ and has linear density $\delta = 2y$. Find the *y*-component of the center of mass of the wire.
 - a. 80π
 - b. $\frac{1}{80\pi}$
 - c. 40π
 - d. $\frac{1}{40\pi}$
 - e. *π*

3. The spiral ramp shown at the right may be parametrized by

 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$ for $0 \le r \le 2$ and $0 \le \theta \le 2\pi$.

Find the total mass, if the surface density is

$$\delta = \sqrt{x^2 + y^2}$$

a. $\frac{2\pi}{3}(5^{3/2} - 1)$
b. $\frac{2\pi}{3}5^{3/2}$
c. $\frac{2\pi}{3}(10^{3/2} - 1)$
d. $\frac{2\pi}{3}10^{3/2}$
e. $\frac{2\pi}{3}(10^{3/2} - 5^{3/2})$

- 4. Consider the spiral ramp described in the previous problem. Find the flux of the vector field $\vec{F} = (0,0,z)$ upward through the spiral ramp.
 - a. $-9\pi^2$
 - b. $-4\pi^2$
 - c. 0
 - d. $4\pi^2$
 - e. $9\pi^2$

5. Compute $\int_{A}^{B} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2x + y, x + 2y)$ along the line segment from A = (2, 1) to B = (1, 3). **Hint**: Find a scalar potential.

- a. 15
- b. 6
- c. 0
- d. -6
- e. -15

6. Compute ∫_A^B F ⋅ ds for F = (-y,x,3) along the helix r(θ) = (3 cos θ, 3 sin θ, 4θ) from A = (3,0,0) to B = (3,0,8π)
a. 0
b. 40π
c. 42π

- d. 44π
- e. 46π

7. Compute
$$\oint_{\partial T} (\sin x + 5y) \, dx + (2x + \cos y) \, dy$$

clockwise around the complete boundary of the triangle shown at the right.

Hint: Use a Theorem.

- a. 12
- b. 8
- c. 0
- d. -8
- e. -12

8. Compute $\oint \vec{F} \cdot d\vec{s}$ for $\vec{F} = (x^2y, 2x^3)$ along the piece of the parabola $y = x^2$ from (-3,9) to (3,9) followed by the line segment from (3,9) back to (-3,9). **Hint**: Use Green's Theorem.

- a. 405
- b. 324
- c. 162
- d. 81
- e. 0

9. Compute $\iint_{\partial C} \vec{F} \cdot d\vec{S}$ over the complete surface of the cylinder $x^2 + y^2 \le 9$ for $0 \le z \le 4$ oriented out from the cylinder for $\vec{F} = (xz, yz, z^2)$. Hint: Use Gauss' Theorem.

- a. 24π
- b. 36π
- c. 72π
- d. 144π
- e. 288π

- 10. Sketch the region of integration for the integral $\int_0^2 \int_{x^2}^4 x \cos(y^2) dy dx$ in problem (11). Select its value here:
 - a. $\frac{1}{4}\sin 2$
 - b. $\frac{1}{4}\sin 4$
 - c. $\frac{1}{2}\sin 4$
 - d. $\frac{1}{4}\sin 16$
 - e. $\frac{1}{2}\sin 16$

12. (20 points) Verify Stokes' Theorem $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial P} \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (-yz, xz, z^2)$ and the **surface** which is the piece of the paraboloid P given by $z = x^2 + y^2$ between z = 1 and z = 9 oriented up and in. Notice that the boundary of P is two circles.

Be sure to check orientations. Use the following steps:

- a. The paraboloid may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$ for $1 \le r \le 3$.
 - $\vec{e}_r =$
 - $\vec{e}_{\theta} =$

$$\vec{N} =$$
 (Check the orientation)

$\vec{\nabla}\times\vec{F}=$

 $\vec{\nabla}\times\vec{F}\Big|_{\vec{R}(r,\theta)} =$

 $\vec{\nabla}\times\vec{F}\boldsymbol{\cdot}\vec{N}=$

 $\iint_{P} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$

Recall $\vec{F} = (-yz, xz, z^2)$

b. Parametrize the upper circle U and compute the line integral.

$$\vec{r}(\theta) =$$

 $\vec{v}(\theta) =$ (Check the orientation)

$$\vec{F}\Big|_{\vec{r}(\theta)} =$$

$$\oint_U \vec{F} \cdot d\vec{s} =$$

c. Parametrize the lower circle L and compute the line integral.

$$\vec{r}(\theta) =$$

$$\vec{v}(\theta) =$$
 (Check the orientation)

$$\vec{F}\Big|_{\vec{r}(\theta)} =$$

$$\oint_L \vec{F} \cdot d\vec{s} =$$

d. Combine $\oint_U \vec{F} \cdot d\vec{s}$ and $\oint_L \vec{F} \cdot d\vec{s}$ to get $\oint_{\partial C} \vec{F} \cdot d\vec{s}$.

13. (15 points) (Also replaces Exam 3 #12.) Find the mass of the solid between the hemispheres $z = \sqrt{4 - x^2 - y^2}$ and $z = \sqrt{9 - x^2 - y^2}$ for $z \ge 0$ if the density is $\delta = \frac{1}{x^2 + y^2 + z^2}$.

14. (15 points) (Also replaces Exam 3 #13.) Find the **centroid** of the **solid** inside the paraboloid $z = x^2 + y^2$ for $1 \le z \le 2$.

Hint: Put the differentials in the order $dr dz d\theta$.

