Definition and Properties of Determinants

Definitions:

If A is an $n \times n$ matrix, then the determinant of A, denoted by either $\operatorname{det} A$ or $|A|$, is defined by

$$
\operatorname{det} A=|A|=\sum_{\operatorname{perm} p} \varepsilon_{p} A_{1 p_{1}} \cdots A_{i p_{i}} \cdots A_{n p_{n}}
$$

where ε_{p} is the sign of the permutation p given by

$$
\varepsilon_{p}=\left\{\begin{array}{cc}
1 & \text { if } p \text { is even } \\
-1 & \text { if } p \text { is odd }
\end{array}\right.
$$

Row Notation: If $\vec{v}_{1}, \cdots, \vec{v}_{n}$ are n vectors in \mathbb{R}^{n} then $\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{v}_{n}\right)$ is the determinant of the matrix whose rows are $\vec{v}_{1}, \cdots, \vec{v}_{n}$; i.e.

$$
\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{v}_{n}\right)=\operatorname{det}\left(\begin{array}{ccc}
\leftarrow & \vec{v}_{1} & \rightarrow \\
\vdots & \\
\leftarrow & \vec{v}_{n} & \rightarrow
\end{array}\right)
$$

Properties:

1. Transpose:

$$
\operatorname{det} A^{\top}=\operatorname{det} A
$$

- Every theorem below involving rows can be restated in terms of columns.

2. Triangular:

If A is triangular (or diagonal), then $\operatorname{det} A$ is the product of the diagonal entries.
3. Row of zeros:

$$
\operatorname{det}\left(\vec{v}_{1}, \cdots, \overrightarrow{0}, \cdots, \vec{v}_{n}\right)=0
$$

4. Interchange rows:

$$
\begin{aligned}
& \operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{u}, \cdots, \vec{w}, \cdots, \vec{v}_{n}\right)=-\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{w}, \cdots, \vec{u}, \cdots, \vec{v}_{n}\right) . \\
& \text { (Row Operation I) }
\end{aligned}
$$

5. Two equal rows:

$$
\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{u}, \cdots, \vec{u}, \cdots, \vec{v}_{n}\right)=0
$$

6. Multiple of row:

$$
\begin{aligned}
& \operatorname{det}\left(\vec{v}_{1}, \cdots, c \vec{u}, \cdots, \vec{v}_{n}\right)=c \operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{u}, \cdots, \vec{v}_{n}\right) . \\
& \text { (Row Operation II) }
\end{aligned}
$$

7. Addition in row:

$$
\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{u}+\vec{w}, \cdots, \vec{v}_{n}\right)=\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{u}, \cdots, \vec{v}_{n}\right)+\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{w}, \cdots, \vec{v}_{n}\right)
$$

8. Add multiple of one row to another row:

$$
\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{u}+c \vec{w}, \cdots, \vec{w}, \cdots, \vec{v}_{n}\right)=\operatorname{det}\left(\vec{v}_{1}, \cdots, \vec{u}, \cdots, \vec{w}, \cdots, \vec{v}_{n}\right) \ldots \ldots \ldots \ldots \ldots \ldots .(R o w ~ O p e r a t i o n ~ I I I) ~(1) ~
$$

9. Multiple of matrix:

$$
\operatorname{det}(c A)=c^{n} \operatorname{det} A
$$

10. Product of Matrices:

$$
\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B
$$

11. Determinant of inverse:

If A is invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$
12. Invertibility:

$$
\begin{array}{lll}
\operatorname{det} A \neq 0 \Leftrightarrow A \text { is invertible (non-singular) } & \Leftrightarrow A \vec{x}=B \text { has a unique solution } & \Leftrightarrow N(A)=\{\overrightarrow{0}\} \\
\operatorname{det} A=0 \Leftrightarrow A \text { is non-invertible (singular) } & \Leftrightarrow A \vec{x}=B \text { has no solution or } \infty \text {-many solutions } & \Leftrightarrow N(A) \neq\{0,
\end{array}
$$

