Definition and Properties of Determinants

Definitions:

If A is an $n \times n$ matrix, then the determinant of A, denoted by either det A or |A|, is defined by

$$\det A = |A| = \sum_{\text{perm } p} \varepsilon_p A_{1p_1} \cdots A_{ip_i} \cdots A_{np_n}$$

where ε_p is the sign of the permutation p given by

$$\varepsilon_p = \begin{cases} 1 & \text{if } p \text{ is even} \\ -1 & \text{if } p \text{ is odd} \end{cases}$$

Row Notation: If $\vec{v}_1, \dots, \vec{v}_n$ are *n* vectors in \mathbb{R}^n then det $(\vec{v}_1, \dots, \vec{v}_n)$ is the determinant of the matrix whose rows are $\vec{v}_1, \dots, \vec{v}_n$; i.e.

$$\det(\vec{v}_1, \cdots, \vec{v}_n) = \det \begin{pmatrix} \leftarrow \vec{v}_1 \rightarrow \\ \vdots \\ \leftarrow \vec{v}_n \rightarrow \end{pmatrix}$$

Properties:

1. Transpose:

 $\det A^{\scriptscriptstyle \top} = \det A$

• Every theorem below involving rows can be restated in terms of columns.

2. Triangular:

If A is triangular (or diagonal), then det A is the product of the diagonal entries.

3. Row of zeros:

$$\det\left(\vec{v}_1,\cdots,\vec{0},\cdots,\vec{v}_n\right)=0$$

- 4. Interchange rows: $det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{v}_n) = -det(\vec{v}_1, \dots, \vec{w}, \dots, \vec{u}, \dots, \vec{v}_n).....$ (Row Operation I)
- 5. Two equal rows: $det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{u}, \dots, \vec{v}_n) = 0$

6. Multiple of row: $\det(\vec{v}_1, \dots, c\vec{u}, \dots, \vec{v}_n) = c \det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{v}_n).$ (Row Operation II)

7. Addition in row: $\det(\vec{v}_1, \dots, \vec{u} + \vec{w}, \dots, \vec{v}_n) = \det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{v}_n) + \det(\vec{v}_1, \dots, \vec{w}, \dots, \vec{v}_n)$

- 8. Add multiple of one row to another row: $det(\vec{v}_1, \dots, \vec{u} + c \vec{w}, \dots, \vec{w}, \dots, \vec{v}_n) = det(\vec{v}_1, \dots, \vec{u}, \dots, \vec{w}, \dots, \vec{v}_n).$ (Row Operation III)
- 9. Multiple of matrix: $det(cA) = c^n detA$
- 10. Product of Matrices: det(AB) = detA detB
- 11. Determinant of inverse: If A is invertible, then det $A^{-1} = \frac{1}{\det A}$
- 12. Invertibility:

$$\det A \neq 0 \iff A \text{ is invertible (non-singular)} \iff A\vec{x} = B \text{ has a unique solution} \iff N(A) = \{\vec{0}\}$$
$$\det A = 0 \iff A \text{ is non-invertible (singular)} \iff A\vec{x} = B \text{ has no solution or ∞-many solutions} \iff N(A) \neq \{\vec{0}\}$$