Definition and Properties of Permutations

A permutation is a rearrangement of things in a set where order matters. We here discuss the permutations of the set $\mathbb{Z}_{n}=\{1,2, \cdots, n\}$. So a permutation of \mathbb{Z}_{n} is a function

$$
p: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}: i \mapsto p_{i}
$$

where $\left\{p_{1}, p_{2}, \cdots p_{n}\right\}=\mathbb{Z}_{n}$. In other words, p is $1-1$ (injective) and onto (surjective). We usually write a permution as an order n-tuple: $p=\left(p_{1}, p_{2}, \cdots p_{n}\right)$. For example, if we consider permutations of \mathbb{Z}_{5}, then the permutation $(2,1,4,5,3)$ is the function

or more briefly, $\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3\end{array}\right)$

Property:

1. There are n ! permutations of \mathbb{Z}_{n}.

A transposition is a permutation in which exactly 2 numbers are interchanged. An adjacent transposition is a transposition in which the 2 numbers are consecutive. For example, if we consider permutations of \mathbb{Z}_{5}, $(3,2,4,1,5)$ is a permutation, $(4,2,3,1,5)$ is a transposition and $(1,3,2,4,5)$ is an adjacent transposition.

When we apply a transposition to a permutation, we take the composition of the functions, which results in interchanging the two entries in the permutation which are indicated by the transposition. For example, when we apply the transposition $(4,2,3,1,5)$ to the permutation $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)=(3,2,4,1,5)$, we get $\left(p_{4}, p_{2}, p_{3}, p_{1}, p_{5}\right)=(1,2,4,3,5)$. Given a permutation, $p=\left(p_{1}, p_{2}, \cdots p_{n}\right)$, there is a sequence of transpositions which bring p into ascending order. For example, here is a sequence of transpositions which bring $(3,2,4,1,5)$ into ascending order:

$$
(3,2,4,1,5) \rightarrow(1,2,4,3,5) \rightarrow(1,2,3,4,5)
$$

And here is a sequence of adjacent transpositions which bring $(3,2,4,1,5)$ into ascending order:

$$
(3,2,4,1,5) \rightarrow(3,2,1,4,5) \rightarrow(3,1,2,4,5) \rightarrow(1,3,2,4,5) \rightarrow(1,2,3,4,5)
$$

Property:

2. If there are two sequence of transpositions which bring a permutation into ascending order, then either both have an even number of transpositions or both have an odd number of transpositions.
Proof: Use induction on n. Reduce a permutation of \mathbb{Z}_{n} to a permutation of \mathbb{Z}_{n-1} roughly as follows: Preceed the sequence by 2 more transpositions, one which moves p_{n} out of the $n^{\text {th }}$ position and one which moves n into the $n^{\text {th }}$ position. Then we are starting with a permutation with n in the $n^{\text {th }}$ position and we only need to permute the first $n-1$ positions.

A permutation is even (resp. odd) if it requires an even (resp. odd) number of transpositions to bring it into ascending order. For example,the permutation ($3,2,4,1,5$) is even because it takes an even number of transpositions to bring it to ascending order. (See the above two sequences.) Similarly,the permutation ($2,1,4,5,3$) is odd because it takes an odd number of transpositions to bring it to ascending order. (Try it.)

We define the sign or signature of the permutation, p, denoted by ε_{p} or $\varepsilon_{p \mid p_{2} \cdots p_{n}}$, to be +1 if p is even and -1 if p is odd. For later purposes, we would also like to write $\varepsilon_{i_{1} i_{2} \cdots i_{n}}$ when $\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ is not a permutation. So we define

$$
\varepsilon_{i i_{2} \cdots i_{n}}=\left\{\begin{aligned}
1 & \text { if } p \text { is an even permutation } \\
-1 & \text { if } p \text { is an even permutation } \\
0 & \text { if } p \text { is not a permutation }
\end{aligned}\right.
$$

For example:

$$
\varepsilon_{3,2,4,1,5}=1 \quad \varepsilon_{2,1,4,5,3}=-1 \quad \varepsilon_{3,2,4,2,5}=0
$$

The inverse of a permutation, p, denoted \bar{p}, is the inverse function of p. To find the inverse permutation, write a $2 \times n$ matrix with the numbers $1,2, \cdots, n$ on the first row and the numbers $p_{1}, p_{2}, \cdots p_{n}$ on the second row. Rearrange the columns so the bottom numbers are in ascending order, taking the top numbers along with them. Then the top row will become \bar{p} :

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
p_{1} & p_{2} & p_{3} & \cdots & p_{n}
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
\bar{p}_{1} & \bar{p}_{2} & \bar{p}_{3} & \cdots & \bar{p}_{n} \\
1 & 2 & 3 & \cdots & n
\end{array}\right)
$$

For example, to find the inverse of $p=(3,2,4,1,5)$ we write:

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 4 & 1 & 5
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
4 & 2 & 1 & 3 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

So $\bar{p}=(4,2,1,3,5)$.

Property:

3. If p is an even (resp. odd) permutation, the so is \bar{p}.

Proof: If we perform a sequence of transpositions on columns of the $2 \times n$ matrix above to bring p into ascending order, then the same sequence of transpositions in reverse order will transfor \bar{p} into ascending order.
For example:

$$
\varepsilon_{4,2,1,3,5}=\varepsilon_{3,2,4,1,5}=1
$$

