Name	ID		1-4	/20
MATH 253	Quiz 1	Spring 2007 P. Yasskin	5	/ 5
Sections 501-503	Solutions		Total	/25

Multiple Choice & Work Out: (5 points each)

1. Find the equation of the sphere with center at (4,3,2) which passes through the point (2,4,0).

a. $(x + 4)^2 + (y + 3)^2 + (z + 2)^2 = \sqrt{3}$ **b.** $(x - 4)^2 + (y - 3)^2 + (z - 2)^2 = 3$ **c.** $(x - 4)^2 + (y + 3)^2 + (z - 2)^2 = 3$ **d.** $(x - 4)^2 + (y - 3)^2 + (z - 2)^2 = 9$ Correct Choice **e.** $(x + 4)^2 + (y - 3)^2 + (z + 2)^2 = 9$

The vector from the center *C* to the point *P* is: $\overrightarrow{CP} = P - C = (-2, 1, -2)$ The radius is the length of this vector: $R = \sqrt{2^2 + 1^2 + 2^2} = 3$ The circle is: $(x - 4)^2 + (y - 3)^2 + (z - 2)^2 = 9$

- **2.** If \vec{u} points South East and \vec{v} points Down, then $\vec{u} \times \vec{v}$ points
 - a. South West
 - b. South East
 - **c**. Up
 - d. North West
 - e. North East Correct Choice

Point your right fingers South East with the palm facing Down, your thumb points North East.

- **3**. A wagon is pulled horizontally from the origin (0,0) to the point (4,0) meters by the force $\vec{F} = (2,1)$ Newtons. Find the work done.
 - **a**. 8 Joules Correct Choice
 - **b**. 4 Joules
 - **c**. $4\sqrt{5}$ Joules
 - d. 12 Joules

e.
$$\frac{4}{\sqrt{5}}$$
 Joules

The displacement vector is $\vec{D} = (4,0)$. So the work is $W = \vec{F} \cdot \vec{D} = 8$ Joules.

- **4**. A triangle has vertices P = (2,1,3), Q=(2,4,0), and R = (4,1,1). Find the angle at P.
 - **a**. 30°
 - **b**. 60° Correct Choice
 - **c**. 90°
 - **d**. 120°
 - **e**. 150°

$$\overrightarrow{PQ} = Q - P = (0, 3, -3) \qquad \overrightarrow{PR} = R - P = (2, 0, -2)$$
$$\left|\overrightarrow{PQ}\right| = \sqrt{9 + 9} = 3\sqrt{2} \qquad \left|\overrightarrow{PR}\right| = \sqrt{4 + 4} = 2\sqrt{2} \qquad \overrightarrow{PQ} \cdot \overrightarrow{PR} = 6$$
$$\cos\theta = \frac{6}{3\sqrt{2}2\sqrt{2}} = \frac{1}{2} \qquad \theta = 60^{\circ} \qquad \text{(Use a 30-60-90 triangle.)}$$

5. A triangle has vertices P = (2, 1, 3), Q=(2, 4, 0), and R = (4, 1, 1). Find the area of the triangle. Solve this on the back of the Scantron. Show all work.

$$\overrightarrow{PQ} = Q - P = (0,3,-3) \qquad \overrightarrow{PR} = R - P = (2,0,-2)$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & -3 \\ 2 & 0 & -2 \end{vmatrix} = \hat{i}(-6-0) - \hat{j}(0--6) + \hat{k}(0-6) = (-6,-6,-6)$$

$$A = \frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right| = \frac{1}{2}\sqrt{36+36+36} = \frac{1}{2}6\sqrt{3} = 3\sqrt{3}$$