\qquad ID

Quiz $3 \quad$ Spring 2007

MATH 253

Sections 501-503
Solutions P. Yasskin

$1-4$	$/ 20$
5	$/ 5$
Total	$/ 25$

Multiple Choice \& Work Out: (5 points each)

1. Find the equation of the plane tangent to the surface $z e^{x y-2}=3$ at the point $(2,1,3)$. Its z-intercept is:
a. 3
b. -3
c. 15 Correct Choice
d. -15
e. 0
$P=(2,1,3) \quad F=z e^{x y-2} \quad \vec{\nabla} F=\left\langle y z e^{x y-2}, x z e^{x y-2}, e^{x y-2}\right\rangle \quad \vec{N}=\left.\vec{\nabla} F\right|_{P}=\langle 3,6,1\rangle$
Tangent plane is $\vec{N} \cdot X=\vec{N} \cdot P \quad$ or $\quad 3 x+6 y+z=3 \cdot 2+6 \cdot 1+1 \cdot 3=15$
or $z=15-3 x-6 y$ The z-intercept is 15 .
2. Find the equation of the line perpendicular to the surface $z e^{x y-2}=3$ at the point $(2,1,3)$. It intersects the $x y$-plane at:
a. $(7,17,0)$
b. $(-7,-17,0)$ Correct Choice
c. $(11,19,0)$
d. $(-11,-19,0)$
e. $(11,19,6)$
$P=(2,1,3) \quad F=z e^{x y-2} \quad \vec{\nabla} F=\left\langle y z e^{x y-2}, x z e^{x y-2}, e^{x y-2}\right\rangle \quad \vec{v}=\left.\vec{\nabla} F\right|_{P}=\langle 3,6,1\rangle$
Normal line is $\quad X=P+\vec{v}=(2,1,3)+t\langle 3,6,1\rangle \quad$ or $\quad(x, y, z)=(2+3 t, 1+6 t, 3+t)$
The line intersects the $x y$-plane when $z=0$ or $3+t=0$ or $t=-3$ $(x, y, z)=(2+3(-3), 1+6(-3), 3+(-3))=(-7,-17,0)$.
3. If the temperature in a room is given by $T=75+x y^{2} z$ and a fly is located at $(2,1,3)$, in what unit vector direction should the fly fly in order to decrease the temperature as fast as possible?
a. $\langle 3,12,2\rangle$
b. $\langle 3,-12,2\rangle$
c. $\langle-3,-12,-2\rangle$
d. $\frac{1}{\sqrt{157}}\langle 3,12,2\rangle$
e. $\frac{1}{\sqrt{157}}\langle-3,-12,-2\rangle \quad$ Correct Choice
$\vec{\nabla} T=\left\langle y^{2} z, 2 x y z, x y^{2}\right\rangle \quad \vec{v}=\left.\vec{\nabla} T\right|_{(2,1,3)}=\langle 3,12,2\rangle \quad|\vec{v}|=\sqrt{9+144+4}=\sqrt{157}$
Direction of Max increase is $\hat{v}=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{\sqrt{157}}\langle 3,12,2\rangle$.
Direction of Max decrease is $-\hat{v}=\frac{-1}{\sqrt{157}}\langle 3,12,2\rangle$.
4. Which of the following is NOT a critical point of $\quad f(x, y)=\left(2 x-x^{2}\right)\left(4 y-y^{2}\right)$?
a. $(0,0)$
b. $(0,4)$
c. $(1,2)$
d. $(2,0)$
e. $(-2,4)$ Correct Choice
$f_{x}=(2-2 x)\left(4 y-y^{2}\right)=0 \quad f_{y}=\left(2 x-x^{2}\right)(4-2 y)=0$
From $f_{x}=0$, either $x=1$ or $y=0$ or $y=4$
Case $x=1$: From $f_{y}=0, \quad(4-2 y)=0 \quad \Rightarrow \quad y=2$
Case $y=0$: From $f_{y}=0, \quad\left(2 x-x^{2}\right) 4=0 \quad \Rightarrow \quad x=0 \quad$ or $\quad x=2$
Case $y=4$: From $f_{y}=0, \quad\left(2 x-x^{2}\right)(-4)=0 \quad \Rightarrow \quad x=0 \quad$ or $x=2$
The critical points are: $(1,2),(0,0),(2,0),(0,4),(2,4)$
OR Simply plug each answer into f_{x} and f_{y}
5. Find 3 numbers a, b and c whose sum is 80 for which $a b+2 b c+3 a c$ is a maximum.

Solve on the back of the Scantron.
We need to maximize $f=a b+2 b c+3 a c$ subject to the constraint $a+b+c=80$.
$c=80-a-b \quad f=a b+2 b(80-a-b)+3 a(80-a-b)=240 a+160 b-3 a^{2}-2 b^{2}-4 a b$
$f_{a}=240-6 a-4 b=0 \quad f_{b}=160-4 b-4 a=0$
$6 a+4 b=240 \quad 4 a+4 b=160$
Subtract: $\quad 2 a=80 \quad a=40 \quad$ Substitute back: $\quad 4 b=160-4 a=0 \quad b=0$
$c=80-a-b=40$
So $\quad a=40, \quad b=0, \quad c=40$

