1-3	/15
4	/10
Total	/25

Multiple Choice: (5 points each)

- 1. The point (1,2) is a critical point of $f(x,y) = (2x x^2)(4y y^2)$. Use the Second Derivative Test to classify (1,2) as one of the following:
 - a. Local Maximum
 - b. Local Minimum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

- **2**. Find the volume of the solid below the surface z = 2xy above the region between the curves $y = x^2$, y = 0 and x = 2.
 - **a**. $\frac{64}{3}$
 - **b**. $\frac{32}{3}$
 - **c**. $\frac{16}{3}$
 - **d**. $\frac{8}{3}$
 - **e**. $\frac{4}{3}$

3. Reverse the order of integration in the integral $\int_0^4 \int_0^{\sqrt{y}} e^{x^3+y^4} dx dy$

a.
$$\int_0^{16} \int_0^{x^2} e^{x^4 + y^3} \, dy \, dx$$

b.
$$\int_0^2 \int_{x^2}^4 e^{x^4 + y^3} \, dy \, dx$$

c.
$$\int_0^{16} \int_0^{x^2} e^{x^3 + y^4} \, dy \, dx$$

d.
$$\int_0^2 \int_{x^2}^4 e^{x^3 + y^4} \, dy \, dx$$

e.
$$\int_0^2 \int_0^{x^2} e^{x^3 + y^4} dy dx$$

4. (10 points) Find the mass and x-component of the center of mass of the plate in the first quadrant bounded by y = 3 - x, the x-axis and the y-axis if the surface density is $\rho = y$.

Solve on the back of the Scantron.