Name_____ Sec____

MATH 251/253

Exam 1

Spring 2008

Sections 508,200,501,502

Version B

P. Yasskin

Multiple Choice: (4 points each. No part credit.)

1-15		/60	17	/15
16		/15	18	/15
Total			/105	

- 1. The triangle with vertices A = (4,1,5), B = (2,3,4) and C = (3,5,2) is
 - a. equilateral
 - b. isosceles but not right
 - c. right but not isosceles
 - d. isosceles and right
 - e. scalene

- **2**. Find the area of the triangle with vertices A = (4,1,5), B = (2,3,4) and C = (3,5,2).
 - **a**. $\frac{65}{2}$
 - **b**. 65
 - **c**. 130
 - **d**. $\frac{1}{2}\sqrt{65}$
 - **e**. $\sqrt{65}$

- **3**. Find an equation of the plane containing the points A = (4,1,5), B = (2,3,4) and C = (3,5,2).
 - **a**. 2x + 5y + 6z = 43
 - **b**. 2x 5y + 6z = 33
 - **c**. 2x 5y 6z = -27
 - **d**. 2x + 5y 6z = -17
 - **e**. 2x 5y + 6z = 13

- **4.** Find the point where the line $\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-4}{4}$ intersects the plane x+y-z=2. Then x+y+z=
 - **a**. 2
 - **b**. 14
 - **c**. 18
 - **d**. 22
 - **e**. 28

5. Which of the following is the equation of the surface?

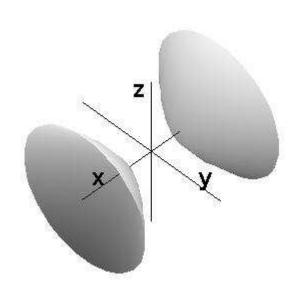
a.
$$-x^2 + y^2 + z^2 = -1$$

b.
$$-x^2 + y^2 + z^2 = 0$$

c.
$$-x^2 + y^2 + z^2 = 1$$

d.
$$x + y^2 + z^2 = 0$$

e.
$$x - y^2 - z^2 = 0$$



- **6.** Find the line tangent to the curve $\vec{r}(t) = (3t, 3t^2, 2t^3)$ at the point (3,3,2).
 - **a.** $(x,y,z) = (3+3t,3+3t^2,2+2t^3)$
 - **b**. $(x,y,z) = (3+3t,3-6t^2,2+6t^3)$
 - **c**. $(x,y,z) = (3+3t,3+6t^2,2+6t^3)$
 - **d**. (x,y,z) = (3+3t,3+6t,2+6t)
 - **e**. (x,y,z) = (3+3t,3-6t,2+6t)

- 7. Find the arc length of the curve $\vec{r}(t) = (3t, 3t^2, 2t^3)$ between (0,0,0) and (3,3,2).
 - **a**. 1
 - **b**. 2
 - **c**. 3
 - **d**. 4
 - **e**. 5

- **8**. Find the tangential acceleration of the curve $\vec{r}(t) = (3t, 3t^2, 2t^3)$.
 - **a**. $3t 2t^3$
 - **b**. $3t + 2t^3$
 - **c**. 12*t*
 - **d**. 36*t*
 - **e**. 6*t*

9. A jet fighter flies along the parabola $z=x^2$ in the xz-plane toward increasing values of x. Then, . . .

HINT: There are no computations.

- **a**. $\hat{N} = (0, 0, 1)$ at all times.
- **b**. $\hat{N} = (0, 0, -1)$ at all times.
- **c**. $\hat{N} = (1,0,1)$ at all times.
- **d**. $\hat{B} = (0, 1, 0)$ at all times.
- **e**. $\hat{B} = (0, -1, 0)$ at all times.

- **10.** If $f(x,y) = x^2 e^{xy}$, which of the following is FALSE?
 - **a**. $f_x(2,1) = 8e^2$
 - **b**. $f_y(2,1) = 8e^2$
 - **c**. $f_{xx}(2,1) = 14e^2$
 - **d**. $f_{yy}(2,1) = 4e^2$
 - **e**. $f_{xy}(2,1) = 20e^2$

- **11.** Find the plane tangent to the graph of the function $f(x,y) = x^3y^2$ at (x,y) = (2,1). The *z*-intercept is
 - **a**. −40
 - **b**. +32
 - **c**. -32
 - **d**. -8
 - **e**. +8

- **12**. Find the unit vector direction in which the function $f(x,y) = x^3y^2$ increases most rapidly at the point (x,y) = (2,1).
 - **a**. $\left(\frac{3}{5}, \frac{4}{5}\right)$
 - **b**. $\left(-\frac{3}{5}, -\frac{4}{5}\right)$
 - **c**. $\left(\frac{4}{5}, \frac{3}{5}\right)$
 - **d**. $\left(-\frac{4}{5}, -\frac{3}{5}\right)$
 - **e**. $\left(\frac{4}{5}, -\frac{3}{5}\right)$

- **13**. Find an equation of the plane tangent to the surface $x^2z + yz^3 = 11$ at the point (x, y, z) = (3, 2, 1).
 - **a.** 6x y + 15z = 31
 - **b.** 6x + y + 15z = 35
 - **c**. 3x 2y + z = 6
 - **d**. 18x 2y + 15z = 65
 - **e**. 3x + 2y + z = 14

14. An arch has the shape of the semi-circle $x^2 + y^2 = 16$ for $y \ge 0$ and has linear mass density given by $\rho = 8 - y$ so it is less dense at the top. Find the total mass of the arch.

NOTE: The arch may be parametrized by $\vec{r}(t) = (4\cos t, 4\sin t)$.

- **a**. $32\pi 16$
- **b**. $32\pi 32$
- **c**. $32\pi 64$
- **d**. 32π
- **e**. $24\pi 16$

- 15. Find the center of mass of the arch of problem 14.
 - **a**. $\left(0, \frac{4-\pi}{\pi-2}\right)$
 - **b**. $\left(0, \frac{4-\pi}{\pi-1}\right)$
 - **c**. $\left(0, \frac{4-\pi}{2\pi-1}\right)$
 - **d**. $\left(0, \frac{8-\pi}{2\pi-1}\right)$
 - **e**. $\left(0, \frac{8-\pi}{\pi-1}\right)$

Work Out: (15 points each. Part credit possible. Show all work.)

16. An object moves around **2 loops** of the helix $\vec{r}(t) = (4\cos t, 4\sin t, 3t)$

from (4,0,0) to $(4,0,12\pi)$ under the action of a force $\vec{F}=(-y,x,z)$.

Find the work done by the force.

17. A cardboard box has length $L=50~{\rm cm}$, width $W=40~{\rm cm}$ and height $H=30~{\rm cm}$. The cardboard is $0.2~{\rm cm}$ thick on each side and $0.4~{\rm cm}$ thick on the top and bottom. Use differentials to estimate the volume of the cardboard used to make the box.

18. In a particular ideal gas the pressure, P, the temperature, T, and density, ρ , are related by $P=10\rho T$.

Currently, the temperature is $T=300^{\circ}\text{K}$ and decreasing at 2°K/hr while the density is $\rho=2\times10^{-4}~\text{gm/cm}^3$ and increasing at $4\times10^{-6}~\text{gm/cm}^3/\text{hr}$. Find the current pressure. Is it increasing or decreasing and at what rate?