\qquad

MATH $253 \quad$ Final Exam Spring 2008
Sections 200,501,502
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-13$	$/ 65$
14	$/ 25$
15	$/ 15$
Total	$/ 105$

1. Find the equation of the plane containing the two lines:
$\vec{r}_{1}(s)=(2+3 s,-4-2 s, 3-s) \quad$ and $\quad \vec{r}_{2}(t)=(2-t,-4+2 t, 3+2 t)$
a. $-2 x-5 y+4 z=45$
b. $-2 x-5 y+4 z=1$
c. $-2 x-5 y+4 z=-3$
d. $\vec{R}(s, t)=(2+3 s-t,-4-2 s+2 t, 3-s+2 t)$
e. $\vec{R}(s, t)=(-2+3 s-t,-5-2 s+2 t, 4-s+2 t)$
2. Find the equation of the plane tangent to the graph of the function $f(x, y)=x^{2}+x y+y^{2}$ at the point $(2,3)$. Then the z-intercept is
a. -38
b. -19
c. 0
d. 19
e. 38
3. Find the arc length of the curve $\vec{r}(t)=\left(\ln t, 2 t, t^{2}\right)$ between $(0,2,1)$ and $\left(1,2 e, e^{2}\right)$. Hint: Look for a perfect square.
a. e^{2}
b. $1+e^{2}$
c. $e^{2}-1$
d. $2+e^{2}$
e. $e^{2}-2$
4. Find the unit binormal \hat{B} of the curve $\vec{r}(t)=\left(\ln t, 2 t, t^{2}\right)$ at $t=1$. Hint: Plug $t=1$ into \vec{v} and \vec{a}.
a. $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$
b. $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$
c. $\left(\frac{1}{3}, \frac{-2}{3}, \frac{2}{3}\right)$
d. $\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$
e. $\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$
5. The volume of a square pyramid is $V=\frac{1}{3} s^{2} h$.

If the side of the base s is currently 3 cm and increasing at $2 \mathrm{~cm} / \mathrm{sec}$ while the height h is currently 4 cm and decreasing at $1 \mathrm{~cm} / \mathrm{sec}$, is the volume increasing or decreasing and at what rate?
a. increasing at $19 \mathrm{~cm}^{3} / \mathrm{sec}$
b. increasing at $13 \mathrm{~cm}^{3} / \mathrm{sec}$
c. neither increasing nor decreasing
d. decreasing at $13 \mathrm{~cm}^{3} / \mathrm{sec}$
e. decreasing at $19 \mathrm{~cm}^{3} / \mathrm{sec}$
6. Which of the following is a local minimum of $f(x, y)=\sin (x) \cos (y)$?
a. $(0,0)$
b. $\left(\frac{\pi}{2}, 0\right)$
c. (π, π)
d. $\left(0, \frac{\pi}{2}\right)$
e. None of the above
7. Find the equation of the plane tangent to the surface $x^{2} z^{2}+y z^{3}=11$ at the point $(2,3,1)$. Then the intersection with the x-axis is at
a. $(28,0,0)$
b. $(16,0,0)$
c. $(14,0,0)$
d. $(7,0,0)$
e. $(4,0,0)$
8. Compute $\int \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=(y, x)$ along the curve $\vec{r}(t)=(t+\sin t, t+\cos t)$ from $\vec{r}(\pi)$ to $\vec{r}(2 \pi)$.
Hint: Find a scalar potential.
a. $3 \pi^{2}+3 \pi$
b. $3 \pi^{2}-3 \pi$
c. $3 \pi^{2}+\pi$
d. $3 \pi^{2}-\pi$
e. $3 \pi-3 \pi^{2}$
9. Find the mass of the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 4$ for $y \geq 0$ if the density is $\delta=z^{2}$.
a. $\frac{4}{3} \pi^{2}$
b. $\frac{8}{3} \pi^{2}$
c. $\frac{32 \pi}{15}$
d. $\frac{64 \pi}{15}$
e. $\frac{128 \pi}{15}$
10. Find the center of mass of the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 4$ for $y \geq 0$ if the density is $\delta=z^{2}$.
a. $\left(0, \frac{5}{8}, 0\right)$
b. $\left(0, \frac{8}{5}, 0\right)$
c. $\left(0, \frac{8 \pi}{3}, 0\right)$
d. $\left(0, \frac{3}{8 \pi}, 0\right)$
e. $\left(0, \frac{3}{4 \pi}, 0\right)$
11. Find the area inside the circle $r=1$ but outside the cardioid $r=1-\cos \theta$.
a. $\frac{\pi}{4}$
b. $\frac{\pi}{2}$
C. $2-\frac{\pi}{4}$

d. $2+\frac{\pi}{4}$
e. $2-\frac{\pi}{2}$
12. Compute $\oint \vec{\nabla} f \cdot d \vec{s}$ counterclockwise once around the polar curve $r=3-\cos (4 \theta)$ for the function $f(x, y)=x^{2} y$.
a. 2π
b. 4π

C. 6π
d. 8π
e. 0
13. Stokes' Theorem states $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{S}$

Compute either integral for the cone C given by $z=2 \sqrt{x^{2}+y^{2}}$ for $z \leq 8$ oriented up and in, and the vector field $\vec{F}=(y z,-x z, z)$.

Note: The cone may be parametrized as $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 2 r)$

The boundary of the cone is the circle $x^{2}+y^{2}=16$ with $z=8$.
a. -768π
b. -256π
c. 64π
d. 256π
e. 768π
14. (25 points) Verify Gauss' Theorem $\quad \iiint_{H} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial H} \vec{F} \cdot d \vec{S}$ for the solid hemisphere $\quad x^{2}+y^{2}+z^{2} \leq 4$ with $z \geq 0$ and the vector field $\quad \vec{F}=\left(x z^{2}, y z^{2}, x^{2}+y^{2}\right)$.

Notice that the boundary of the solid hemisphere ∂H consists of the hemisphere surface S given by $x^{2}+y^{2}+z^{2}=4$ with $z \geq 0$ and the disk D given by $x^{2}+y^{2} \leq 4$ with $z=0$. Be sure to check and explain the orientations. Use the following steps:
a. Compute the volume integral by successively finding:

$$
\vec{\nabla} \cdot \vec{F}(x, y, z), \quad \vec{\nabla} \cdot \vec{F}(\rho, \theta, \varphi), \quad d V, \quad \iiint_{H} \vec{\nabla} \cdot \vec{F} d V
$$

b. Compute the surface integral over the disk by parametrizing the disk and successively finding:

$$
\vec{R}(r, \theta), \quad \vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{F}(\vec{R}(r, \theta)), \quad \iint_{D} \vec{F} \cdot d \vec{S}
$$

Recall: $\quad \vec{F}=\left(x z^{2}, y z^{2}, x^{2}+y^{2}\right)$
c. Compute the surface integral over the hemisphere by parametrizing the surface and successively finding:

$$
\vec{R}(\theta, \varphi), \quad \vec{e}_{\theta}, \quad \vec{e}_{\varphi}, \quad \vec{N}, \quad \vec{F}(\vec{R}(\theta, \varphi)), \quad \iint_{S} \vec{F} \cdot \vec{S}
$$

d. Combine $\iint_{D} \vec{F} \cdot d \vec{S}$ and $\iint_{S} \vec{F} \cdot d \vec{S}$ to get $\iint_{\partial H} \vec{F} \cdot d \vec{S}$
15. (15 points) A rectangular solid sits on the $x y$-plane with its top four vertices on the paraboloid $z=9-9 x^{2}-y^{2}$.
Find the dimensions and volume of the largest such box.

16. (5 points) (Honors only. Replaces \#2.) Find the plane tangent to the parametric surface $\vec{R}(u, v)=(u+v, u-v, u v)$ at the point $\vec{R}(1,1)=(2,0,1)$.
Give both the parametric equation and the normal equation of the tangent plane.

