Name	Sec

MATH 253 Final Exam Spring 2008

Sections 200,501,502 P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1. Find the equation of the plane containing the two lines:

 $\vec{r}_1(s) = (2+3s, -4-2s, 3-s)$ and $\vec{r}_2(t) = (2-t, -4+2t, 3+2t)$ **a**. -2x - 5y + 4z = 45 **b**. -2x - 5y + 4z = 1 **c**. -2x - 5y + 4z = -3**d**. $\vec{R}(s,t) = (2+3s-t, -4-2s+2t, 3-s+2t)$

e. $\vec{R}(s,t) = (-2+3s-t, -5-2s+2t, 4-s+2t)$

- **2**. Find the equation of the plane tangent to the graph of the function $f(x,y) = x^2 + xy + y^2$ at the point (2,3). Then the *z*-intercept is
 - **a**. -38
 - **b**. -19
 - **c**. 0
 - **d**. 19
 - **e**. 38

1-13	/65
14	/25
15	/15
Total	/105

- **3**. Find the arc length of the curve $\vec{r}(t) = (\ln t, 2t, t^2)$ between (0, 2, 1) and $(1, 2e, e^2)$. Hint: Look for a perfect square.
 - **a**. e^2
 - **b**. $1 + e^2$
 - **c**. $e^2 1$
 - **d**. $2 + e^2$
 - **e**. $e^2 2$

4. Find the unit binormal \hat{B} of the curve $\vec{r}(t) = (\ln t, 2t, t^2)$ at t = 1. Hint: Plug t = 1 into \vec{v} and \vec{a} .

a.
$$\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$$

b. $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$
c. $\left(\frac{1}{3}, \frac{-2}{3}, \frac{2}{3}\right)$
d. $\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$
e. $\left(\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right)$

- 5. The volume of a square pyramid is $V = \frac{1}{3}s^2h$. If the side of the base *s* is currently 3 cm and increasing at 2 cm/sec while the height *h* is currently 4 cm and decreasing at 1 cm/sec, is the volume increasing or decreasing and at what rate?
 - **a**. increasing at $19 \text{ cm}^3/\text{sec}$
 - **b.** increasing at $13 \text{ cm}^3/\text{sec}$
 - c. neither increasing nor decreasing
 - **d**. decreasing at $13 \text{ cm}^3/\text{sec}$
 - e. decreasing at $19 \text{ cm}^3/\text{sec}$

- **6**. Which of the following is a local minimum of $f(x,y) = \sin(x)\cos(y)$?
 - **a**. (0,0)
 - **b**. $\left(\frac{\pi}{2}, 0\right)$
 - **c**. (π, π)
 - **d**. $\left(0, \frac{\pi}{2}\right)$
 - e. None of the above

- 7. Find the equation of the plane tangent to the surface $x^2z^2 + yz^3 = 11$ at the point (2,3,1). Then the intersection with the *x*-axis is at
 - **a**. (28,0,0)
 - **b**. (16,0,0)
 - **c**. (14,0,0)
 - **d**. (7,0,0)
 - **e**. (4,0,0)

- 8. Compute $\int \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (y, x)$ along the curve $\vec{r}(t) = (t + \sin t, t + \cos t)$ from $\vec{r}(\pi)$ to $\vec{r}(2\pi)$. Hint: Find a scalar potential.
 - **a**. $3\pi^2 + 3\pi$
 - **b**. $3\pi^2 3\pi$
 - **c**. $3\pi^2 + \pi$
 - **d**. $3\pi^2 \pi$
 - **e**. $3\pi 3\pi^2$

- **9**. Find the mass of the solid hemisphere $x^2 + y^2 + z^2 \le 4$ for $y \ge 0$ if the density is $\delta = z^2$.
 - **a**. $\frac{4}{3}\pi^2$
 - **b**. $\frac{8}{3}\pi^2$
 - c. $\frac{32\pi}{15}$
 - **d**. $\frac{64\pi}{15}$
 - **e**. $\frac{128\pi}{15}$

- **10**. Find the center of mass of the solid hemisphere $x^2 + y^2 + z^2 \le 4$ for $y \ge 0$ if the density is $\delta = z^2$.
 - **a**. $\left(0, \frac{5}{8}, 0\right)$ **b**. $\left(0, \frac{8}{5}, 0\right)$ **c**. $\left(0, \frac{8\pi}{3}, 0\right)$ **d**. $\left(0, \frac{3}{8\pi}, 0\right)$ **e**. $\left(0, \frac{3}{4\pi}, 0\right)$

- **11**. Find the area inside the circle r = 1but outside the cardioid $r = 1 - \cos \theta$.
 - a. $\frac{\pi}{4}$
 - **b**. $\frac{\pi}{2}$
 - **c**. $2 \frac{\pi}{4}$
 - **d**. $2 + \frac{\pi}{4}$
 - **e**. $2 \frac{\pi}{2}$

- **12**. Compute $\oint \vec{\nabla} f \cdot d\vec{s}$ counterclockwise once around the polar curve $r = 3 \cos(4\theta)$ for the function $f(x, y) = x^2 y$.
 - **a**. 2π
 - **b**. 4π
 - **C**. 6π
 - **d**. 8π
 - **e**. 0

13. Stokes' Theorem states $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{S}$

Compute either integral for the cone *C* given by $z = 2\sqrt{x^2 + y^2}$ for $z \le 8$ oriented up and in, and the vector field $\vec{F} = (yz, -xz, z)$. Note: The cone may be parametrized as $\vec{R}(r, \theta) = (r\cos\theta, r\sin\theta, 2r)$

The boundary of the cone is the circle $x^2 + y^2 = 16$ with z = 8.

a. -768π

- **b**. -256π
- **c**. 64π
- **d**. 256π
- **e**. 768π

14. (25 points) Verify Gauss' Theorem $\iiint_{H} \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial H} \vec{F} \cdot d\vec{S}$ for the solid hemisphere $x^2 + y^2 + z^2 \le 4$ with $z \ge 0$ and the vector field $\vec{F} = (xz^2, yz^2, x^2 + y^2).$

Notice that the boundary of the solid hemisphere ∂H consists of the hemisphere surface *S* given by $x^2 + y^2 + z^2 = 4$ with $z \ge 0$ and the disk *D* given by $x^2 + y^2 \le 4$ with z = 0. Be sure to check and explain the orientations. Use the following steps:

a. Compute the volume integral by successively finding:

$$\vec{\nabla} \cdot \vec{F}(x, y, z), \quad \vec{\nabla} \cdot \vec{F}(\rho, \theta, \varphi), \quad dV, \quad \iiint_{H} \vec{\nabla} \cdot \vec{F} \, dV$$

b. Compute the surface integral over the disk by parametrizing the disk and successively finding: $\vec{R}(r,\theta), \vec{e}_r, \vec{e}_\theta, \vec{N}, \vec{F}(\vec{R}(r,\theta)), \iint \vec{F} \cdot d\vec{S}$

$$\vec{R}(r,\theta), \ \vec{e}_r, \ \vec{e}_{\theta}, \ \vec{N}, \ \vec{F}(\vec{R}(r,\theta)), \ \iint_D \vec{F} \cdot c$$

Recall: $\vec{F} = (xz^2, yz^2, x^2 + y^2)$

c. Compute the surface integral over the hemisphere by parametrizing the surface and successively finding:

 $\vec{R}(\theta, \varphi), \quad \vec{e}_{\theta}, \quad \vec{e}_{\varphi}, \quad \vec{N}, \quad \vec{F}\left(\vec{R}(\theta, \varphi)\right), \quad \iint_{S} \vec{F} \cdot d\vec{S}$

d. Combine $\iint_{D} \vec{F} \cdot d\vec{S}$ and $\iint_{S} \vec{F} \cdot d\vec{S}$ to get $\iint_{\partial H} \vec{F} \cdot d\vec{S}$

15. (15 points) A rectangular solid sits on the *xy*-plane with its top four vertices on the paraboloid $z = 9 - 9x^2 - y^2$. Find the dimensions and volume of the largest such box.

16. (5 points) (Honors only. Replaces #2.) Find the plane tangent to the parametric surface $\vec{R}(u,v) = (u+v, u-v, uv)$ at the point $\vec{R}(1,1) = (2,0,1)$.

Give both the parametric equation and the normal equation of the tangent plane.