Consider the curve \(\mathbf{r}(t) = (e^t, \sqrt{2} t, e^{-t}) \). Compute each of the following. Show your work. Simplify where possible.

1. velocity
 \[\mathbf{v}(t) = \]

2. acceleration
 \[\mathbf{a}(t) = \]

3. jerk
 \[\mathbf{j}(t) = \]

4. speed (HINT: The quantity in the square root is a perfect square.)
 \[|\mathbf{v}(t)| = \]

5. arclength between \((1, 0, 1)\) and \((e, \sqrt{2}, \frac{1}{e})\)
 \[L = \]

6. unit tangent vector
 \[\mathbf{T} = \]

7. \(\mathbf{v} \times \mathbf{a} \)
 \[\mathbf{v} \times \mathbf{a} = \]

8. \(|\mathbf{v} \times \mathbf{a}| \)
 \[|\mathbf{v} \times \mathbf{a}| = \]

9. unit binormal vector
 \[\mathbf{B} = \]
10. unit normal vector
\[\vec{N} = \]

11. curvature
\[\kappa = \]

12. torsion
\[\tau = \]

13. tangential acceleration (compute in 2 ways)
\[a_T = \]

\[a_T = \]

14. normal acceleration (compute in 2 ways)
\[a_N = \]

\[a_N = \]

15. mass of a wire between \((1, 0, 1)\) and \((e, \sqrt{2}, \frac{1}{e})\) with linear density \(\rho = x - z\)
\[M = \]

16. work to move a bead along the wire from \((1, 0, 1)\) to \((e, \sqrt{2}, \frac{1}{e})\) with the force \(\vec{F} = (z, y, x)\)
\[\vec{F}(\vec{r}(t)) = \]

\[W = \]