Name_____ Sec____

MATH 253

Paper Homework 1

Spring 2008

Section 200,501.502

P. Yasskin

Consider the curve $\vec{r}(t) = (e^t, \sqrt{2}t, e^{-t})$. Compute each of the following. Show your work. Simplify where possible.

1. velocity

$$\vec{v}(t) =$$

2. acceleration

$$\vec{a}(t) =$$

- 3. $\overrightarrow{j}(t) =$
- **4**. speed (HINT: The quantity in the square root is a perfect square.) $|\vec{v}(t)| =$
- 5. arclength between (1,0,1) and $\left(e,\sqrt{2}\,,\frac{1}{e}\,\right)$ L=
- **6.** unit tangent vector $\hat{T} =$

7.
$$\vec{v} \times \vec{a}$$

 $\vec{v} \times \vec{a} =$

- **8**. $|\vec{v} \times \vec{a}|$ $|\vec{v} \times \vec{a}| =$
- 9. unit binormal vector $\vec{B} =$

10. unit normal vector

$$\vec{N} =$$

11. curvature

12. torsion

$$\tau =$$

13. tangential acceleration (compute in 2 ways)

$$a_T =$$

$$a_T =$$

14. normal acceleration (compute in 2 ways)

$$a_N =$$

$$a_N =$$

15. mass of a wire between (1,0,1) and $\left(e,\sqrt{2}\,,\frac{1}{e}\,\right)$ with linear density $\rho=x-z$ M=

16. work to move a bead along the wire from (1,0,1) to $\left(e,\sqrt{2},\frac{1}{e}\right)$ with the force $\vec{F}=(z,y,x)$ $\vec{F}(\vec{r}(t))=$

$$W =$$