Name \qquad Sec \qquad

MATH 251/253

Quiz 3

Spring 2008
Section 508/200,501,502
Solutions
P. Yasskin

1	$/ 10$	3	$/ 10$
2	$/ 5$	Total	125

1. (10 points) Find all critical points of the function $f=2 x^{2} y+3 x y^{2}+6 x y$. Then use the $2^{\text {nd }}$ Derivative Test to classify each as a local minimum, local maximum or saddle point or say the test fails.

Find Critical Points:
$f_{x}=4 x y+3 y^{2}+6 y=y(4 x+3 y+6) \quad f_{y}=2 x^{2}+6 x y+6 x=x(2 x+6 y+6)$
$f_{x}=0 \quad \Rightarrow \quad y=0 \quad$ or $\quad 4 x+3 y+6=0$
$f_{y}=0 \quad \Rightarrow \quad x=0 \quad$ or $\quad 2 x+6 y+6=0$
Case 1: $y=0$ and $x=0$
Case 2: $y=0$ and $2 x+6 y+6=0 \quad \Rightarrow \quad 2 x+6=0 \quad x=-3$
Case 3: $4 x+3 y+6=0 \quad$ and $\quad x=0 \quad \Rightarrow \quad 3 y+6=0 \quad y=-2$
Case 4: (1) $4 x+3 y+6=0$ and (2) $2 x+6 y+6=0$

$$
2 \times(1)-(2): \quad 6 x+6=0 \quad x=-1
$$

(1): $-4+3 y+6=0 \quad y=-2 / 3$

$$
(-1,-2 / 3)
$$

Classify:

$$
f_{x x}=4 y \quad f_{y y}=6 x \quad f_{x y}=4 x+6 y+6 \quad D=f_{x x} f_{y y}-f_{x y}{ }^{2}
$$

x	y	$f_{x x}$	$f_{y y}$	$f_{x y}$	D	Type
0	0	0	0	6	-36	saddle
-3	0	0	-18	-6	-36	saddle
0	-2	-8	0	-6	-36	saddle
-1	$-2 / 3$	$-8 / 3$	-6	-2	12	local maximum

2. (5 points) If the temperature in a room is given by $T=75+x y+x z+y z$. Find the rate of change of the temperature in the direction of the vector $(12,4,3)$ at the point $(1,0,2)$.

$$
\begin{aligned}
& \vec{\nabla} T=\left.(y+z, x+z, x+y) \quad \vec{\nabla} T\right|_{(1,0,2)}=(2,3,1) \\
& \vec{v}=(12,4,3) \quad|\vec{v}|=\sqrt{144+16+9}=13 \quad \hat{v}=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{13}(12,4,3) \\
& D_{\hat{v}} f=\left.\hat{v} \cdot \vec{\nabla} T\right|_{(1,0,2)}=\frac{1}{13}(12(2)+4(3)+3(1))=3
\end{aligned}
$$

3. (10 points) A rectangular box sits on the $x y$-plane with its upper vertices on the elliptic paraboloid $z=36-9 x^{2}-4 y^{2}$. Find the dimensions and volume of the largest such box.

Method of Eliminating a Variable:

Maximize $V=(2 x)(2 y) z=4 x y z$ subject to $z=36-9 x^{2}-4 y^{2}$.
Maximize $\quad V=4 x y\left(36-9 x^{2}-4 y^{2}\right)=144 x y-36 x^{3} y-16 x y^{3}$.
$V_{x}=144 y-108 x^{2} y-16 y^{3}=4 y\left(36-27 x^{2}-4 y^{2}\right)=0$
$V_{y}=144 x-36 x^{3}-48 x y^{2}=4 x\left(36-9 x^{2}-12 y^{2}\right)=0$
To have a non-zero volume, we must have $x \neq 0$ and $y \neq 0$.
So we must solve $\left\{\begin{array}{ll}36-27 x^{2}-4 y^{2}=0 & \text { eq } 1 \\ 36-9 x^{2}-12 y^{2}=0 & \text { eq } 2\end{array}\right\}$
$3 \times($ eq 1$)-($ eq 2$)$ is: $72-72 x^{2}=0 \quad$ or $\quad x^{2}=1 \quad$ or $\quad x=1$
Substitute into eq 1: $36-27-4 y^{2}=0$ or $4 y^{2}=9$ or $y=\frac{3}{2}$
Substitute back: $\quad z=36-9 x^{2}-4 y^{2}=36-9-9=18$
The dimensions are: $2 \times 3 \times 18$
The volume is: $V=4 x y z=4 \cdot 1 \cdot \frac{3}{2} \cdot 18=108$

Method of Lagrange Multipliers:

Maximize $\quad V=(2 x)(2 y) z=4 x y z$ subject to $g=z+9 x^{2}+4 y^{2}=36$.
$\vec{\nabla} V=(4 y z, 4 x z, 4 x y) \quad \vec{\nabla} g=(18 x, 8 y, 1) \quad$ Lagrange equations: $\vec{\nabla} V=\lambda \vec{\nabla} g:$
$4 y z=\lambda 18 x, \quad 4 x z=\lambda 8 y, \quad 4 x y=\lambda$
$\frac{4 x y z}{\lambda}=18 x^{2}=8 y^{2}=z$
From the constraint: $\quad 36=z+\frac{z}{2}+\frac{z}{2}=2 z \quad z=18$
$18 x^{2}=8 y^{2}=z=18 \quad x=1 \quad y=\frac{3}{2}$
The dimensions are: $2 \times 3 \times 18$
The volume is: $V=4 x y z=4 \cdot 1 \cdot \frac{3}{2} \cdot 18=108$

