Name	Sec					
		Spring 2009	1	/10	3	/10
MATH 251/253	Quiz 3	Spring 2008		. –	T . (.)	(05
Section 508/200,501,502	Solutions	P. Yasskin	2	/ 5	Total	/25

1. (10 points) Find all critical points of the function $f = 2x^2y + 3xy^2 + 6xy$. Then use the 2nd Derivative Test to classify each as a local minimum, local maximum or saddle point or say the test fails.

Find Critical Points:

$$f_x = 4xy + 3y^2 + 6y = y(4x + 3y + 6) \qquad f_y = 2x^2 + 6xy + 6x = x(2x + 6y + 6)$$

$$f_x = 0 \implies y = 0 \quad \text{or} \quad 4x + 3y + 6 = 0$$

$$f_y = 0 \implies x = 0 \quad \text{or} \quad 2x + 6y + 6 = 0$$
Case 1: $y = 0 \quad \text{and} \quad x = 0$
(0,0)
Case 2: $y = 0 \quad \text{and} \quad 2x + 6y + 6 = 0 \implies 2x + 6 = 0 \quad x = -3$
(-3,0)
Case 3: $4x + 3y + 6 = 0 \quad \text{and} \quad x = 0 \implies 3y + 6 = 0 \quad y = -2$
(0,-2)
Case 4: (1) $4x + 3y + 6 = 0 \quad \text{and} \quad (2) \quad 2x + 6y + 6 = 0$
 $2 \times (1) - (2)$: $6x + 6 = 0 \quad x = -1$

(1):
$$-4 + 3y + 6 = 0$$
 $y = -2/3$ (-1, -2/3)

Classify:

$$f_{xx} = 4y$$
 $f_{yy} = 6x$ $f_{xy} = 4x + 6y + 6$ $D = f_{xx}f_{yy} - f_{xy}^2$

x	v	frr	$f_{\rm unv}$	f_{rrv}	D	Type
	<i>y</i>	JAA	Ј уу	JXY	-	.) p o
0	0	0	0	6	-36	saddle
-3	0	0	-18	-6	-36	saddle
0	-2	-8	0	-6	-36	saddle
-1	-2/3	-8/3	-6	-2	12	local maximum

2. (5 points) If the temperature in a room is given by T = 75 + xy + xz + yz. Find the rate of change of the temperature **in the direction of** the vector (12,4,3) at the point (1,0,2).

$$\vec{\nabla}T = (y + z, x + z, x + y) \qquad \vec{\nabla}T \Big|_{(1,0,2)} = (2,3,1)$$
$$\vec{v} = (12,4,3) \qquad |\vec{v}| = \sqrt{144 + 16 + 9} = 13 \qquad \hat{v} = \frac{\vec{v}}{|\vec{v}|} = \frac{1}{13}(12,4,3)$$
$$D_{\hat{v}}f = \hat{v} \cdot \vec{\nabla}T \Big|_{(1,0,2)} = \frac{1}{13}(12(2) + 4(3) + 3(1)) = 3$$

3. (10 points) A rectangular box sits on the *xy*-plane with its upper vertices on the elliptic paraboloid $z = 36 - 9x^2 - 4y^2$. Find the **dimensions** and **volume** of the largest such box.

Method of Eliminating a Variable:

Maximize V = (2x)(2y)z = 4xyz subject to $z = 36 - 9x^2 - 4y^2$. Maximize $V = 4xy(36 - 9x^2 - 4y^2) = 144xy - 36x^3y - 16xy^3$. $V_x = 144y - 108x^2y - 16y^3 = 4y(36 - 27x^2 - 4y^2) = 0$ $V_y = 144x - 36x^3 - 48xy^2 = 4x(36 - 9x^2 - 12y^2) = 0$ To have a non-zero volume, we must have $x \neq 0$ and $y \neq 0$. $\begin{cases} 36 - 27x^2 - 4y^2 = 0 \\ 36 - 27x^2 - 4y^2 = 0 \end{cases}$ eq 1

So we must solve
$$\begin{cases} 36 - 27x^2 - 4y^2 = 0 & \text{eq } 1 \\ 36 - 9x^2 - 12y^2 = 0 & \text{eq } 2 \end{cases}$$

 $3 \times (\text{eq } 1) - (\text{eq } 2)$ is: $72 - 72x^2 = 0 & \text{or} \quad x^2 = 1 & \text{or} \quad x = 1$
Substitute into eq 1: $36 - 27 - 4y^2 = 0 & \text{or} \quad 4y^2 = 9 & \text{or} \quad y = \frac{3}{2}$
Substitute back: $z = 36 - 9x^2 - 4y^2 = 36 - 9 - 9 = 18$
The dimensions are: $2 \times 3 \times 18$
The volume is: $V = 4xyz = 4 \cdot 1 \cdot \frac{3}{2} \cdot 18 = 108$

Method of Lagrange Multipliers:

Maximize V = (2x)(2y)z = 4xyz subject to $g = z + 9x^2 + 4y^2 = 36$. $\vec{\nabla}V = (4yz, 4xz, 4xy)$ $\vec{\nabla}g = (18x, 8y, 1)$ Lagrange equations: $\vec{\nabla}V = \lambda\vec{\nabla}g$: $4yz = \lambda 18x$, $4xz = \lambda 8y$, $4xy = \lambda$ $\frac{4xyz}{\lambda} = 18x^2 = 8y^2 = z$ From the constraint: $36 = z + \frac{z}{2} + \frac{z}{2} = 2z$ z = 18 $18x^2 = 8y^2 = z = 18$ x = 1 $y = \frac{3}{2}$ The dimensions are: $2 \times 3 \times 18$ The volume is: $V = 4xyz = 4 \cdot 1 \cdot \frac{3}{2} \cdot 18 = 108$