Name		Sec	1-14	/56	17	/12	
MATH 253	Exam 1	Fall 2008	15	/12	18	/12	
Sections 501-503,200		P. Yasskin	16	/12			
Multiple Choice: (4 points each. No part credit.)				Total		/104	

- **1**. For the triangle with vertices $A = (\sqrt{2}, 2, -2)$, $B = (\sqrt{2}, -1, 1)$ and $C = (3\sqrt{2}, -3, 3)$ find the angle at *B*.
 - **a**. 45°
 - **b**. 60°
 - **c**. 120°
 - **d**. 135°
 - **e**. 150°

- **2**. For the triangle with vertices $A = (\sqrt{2}, 2, -2)$, $B = (\sqrt{2}, -1, 1)$ and $C = (3\sqrt{2}, -3, 3)$ find the area.
 - **a**. 144
 - **b**. 72
 - **c**. 12
 - **d**. $\sqrt{72}$
 - **e**. 6

Problems 3 through 8 refer to the curve $\vec{r}(t) = (t^2, 2t, \ln t)$:

- **3**. Find the line tangent to the curve at the point (1,2,0).
 - **a**. (x, y, z) = (2 + t, 2 + 2t, 1)
 - **b**. (x, y, z) = (2 + t, 2 2t, 1)
 - **c**. (x, y, z) = (2 + t, -2 2t, 1)
 - **d**. (x, y, z) = (1 + 2t, 2 + 2t, t)
 - **e**. (x, y, z) = (1 + 2t, 2 2t, t)
- **4**. Find the arc length of the curve between (1,2,0) and $(4,4,\ln 2)$. HINT: Look for a perfect square.
 - **a**. $3 + \ln 2$
 - **b**. $4 + \ln 2$
 - **c**. $3 + \ln 4$
 - **d**. $4 + \ln 4$
 - **e**. $1 + \ln 4$
- **5**. Find the tangential acceleration a_T of the curve.
 - **a.** $\frac{2t^2 + 1}{t^2}$ **b.** $\frac{2t^2 - 1}{t^2}$ **c.** $\frac{4t^4 + 1}{t^2}$ **d.** $\frac{4t^4 - 1}{t^2}$
 - **e**. $2 + \ln t$

Problems 3 through 8 refer to the curve $\vec{r}(t) = (t^2, 2t, \ln t)$:

6. Find the binormal vector \hat{B} of the curve.

a.
$$\left(\frac{-1}{2t^2+1}, \frac{-2t}{2t^2+1}, \frac{-2t^2}{2t^2+1}\right)$$

b. $\left(\frac{-1}{2t^2+1}, \frac{2t}{2t^2+1}, \frac{-2t^2}{2t^2+1}\right)$
c. $\left(\frac{-2}{t^2}, \frac{-4}{t}, -4\right)$
d. $\left(\frac{-2}{t^2}, \frac{4}{t}, -4\right)$
e. $(-2, -4t, -4t^2)$

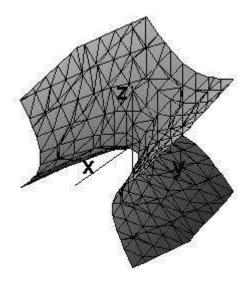
- 7. Find the mass of a wire in the shape of the curve between (1,2,0) and $(4,4,\ln 2)$, if its linear mass density is $\rho = x + \frac{y}{2}e^{z}$.
 - **a**. 8
 - **b**. 12
 - **c**. 16
 - **d**. 18
 - **e**. 20
- **8**. Find the work done to move an object along the curve from (1,2,0) to $(4,4,\ln 2)$, under the action of the force $\vec{F} = (y, x, xy)$.
 - **a**. $\frac{28}{3}$

 - **b**. $\frac{32}{3}$
 - **c**. $\frac{56}{3}$
 - **d**. $\frac{64}{3}$
 - **e**. 27

- **9**. Find the plane which passes through the point P = (2, 4, -1) and is perpendicular to the line (x, y, z) = (1 + 3t, 2 + t, 3 + 2t). Its *z*-intercept is
 - **a**. -8
 - **b**. -4
 - **c**. -2
 - **d**. 4
 - **e**. 8

- **10**. Find the point where the line (x, y, z) = (1 3t, 2 + t, 1 2t) intersects the plane 2x + 3y 3z = -1. At this point x + y + z =
 - **a**. 12
 - **b**. 6
 - **c**. 5
 - **d**. 4
 - e. -1

- 11. Which of the following is the equation of the surface?
 - **a**. $x^2 y^2 z^2 = 0$
 - **b**. $x y^2 + z^2 = 0$
 - **c**. $x + y^2 z^2 = 0$
 - **d**. $x y^2 z^2 = 0$
 - **e**. $x + y^2 + z^2 = 0$



12. Which of the following is the function graphed?

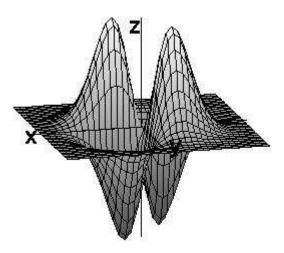
a.
$$z = x^2 y^2 e^{-x^2 - y^2}$$

b.
$$z = (x^2 - y^2)e^{-x^2 - y^2}$$

c.
$$z = (y^2 - x^2)e^{-x^2 - y^2}$$

$$d. \quad z = xye^{-x^2 - y^2}$$

e.
$$z = -x y e^{-x^2 - y^2}$$



13. If $f(x,y) = y \sin(xy)$, which of the following is FALSE?

- **a**. $f_x(1,2) = 4\cos(2)$
- **b**. $f_y(1,2) = \sin(2) + 2\cos(2)$
- **c**. $f_{xx}(1,2) = -4\sin(2) + 4\cos(2)$
- **d**. $f_{xy}(1,2) = 4\cos(2) 4\sin(2)$
- **e**. $f_{yy}(1,2) = 2\cos(2) 2\sin(2)$

14. A function f(x,y) satisfies: f(3,4) = 2, $f_x(3,4) = -2$, $f_y(3,4) = 3$. Use the linear approximation to estimate f(3,2,3,9).

- **a**. -0.7
- **b**. 1.3
- **c**. 2.7
- **d**. 5.3
- **e**. 7.3

- **15**. (12 points) Duke Skywater is flying across the galaxy in the Millenium Eagle when he find himself passing through a dangerous polaron field. He is currently at the point $\vec{r} = (-1, 1, 2)$ and has velocity $\vec{v} = (0.1, -0.2, 0.2)$ and the polaron density is $\rho = xz^2 + yz^3$.
 - a. (8 pts) What is the polaron density and its rate of change as currently seen by Duke?

b. (4 pts) In what unit vector direction should Duke travel to **reduce** the polaron density as fast as possible?

16. (12 points) The temperature around a candle is given by $T = 110 - x^2 - y^2 - 2z^2$. Find the maximum temperature on the plane 4x + 6y + 8z = 42 and the point where it occur. **17**. (12 points) Find an equation of the plane tangent to the graph of the function $f(x,y) = 2x^2y - xy^2$ at (x,y) = (2,1). Then find its *z*-intercept.

18. (12 points) Find an equation of the plane tangent to the surface $x^4 + x^2y^2 + y^2z^2 = 21$ at the point (x, y, z) = (1, -2, 2). Then find its *z*-intercept.