\qquad

$1-14$	$/ 56$	17	$/ 12$
15	$/ 12$	18	$/ 12$
16	$/ 12$		
Total		$/ 104$	

MATH 253	Exam 1	Fall 2008
Sections 501-503,200	Solutions	P. Yasskin

Multiple Choice: (4 points each. No part credit.)

1. For the triangle with vertices $A=(\sqrt{2}, 2,-2), B=(\sqrt{2},-1,1)$ and $C=(3 \sqrt{2},-3,3)$ find the angle at B.
a. 45°
b. 60°
c. 120°
d. 135° correct choice
e. 150°

$$
\begin{aligned}
& \overrightarrow{B A}=A-B=(0,3,-3) \quad \overrightarrow{B C}=C-B=(2 \sqrt{2},-2,2) \\
& \overrightarrow{B A} \cdot \overrightarrow{B C}=-6-6=-12 \quad|\overrightarrow{B A}|=\sqrt{9+9}=3 \sqrt{2} \quad|\overrightarrow{B C}|=\sqrt{8+4+4}=4 \\
& \cos \theta=\frac{\overrightarrow{B A} \cdot \overrightarrow{B C}}{|\overrightarrow{B A}||\overrightarrow{B C}|}=\frac{-12}{3 \sqrt{2} 4}=\frac{-1}{\sqrt{2}} \quad \theta=135^{\circ}
\end{aligned}
$$

2. For the triangle with vertices $A=(\sqrt{2}, 2,-2), B=(\sqrt{2},-1,1)$ and $C=(3 \sqrt{2},-3,3)$ find the area.
a. 144
b. 72
c. 12
d. $\sqrt{72}$
e. 6 correct choice

$$
\begin{aligned}
& \begin{array}{l}
\overrightarrow{B A}=(0,3,-3) \\
\overrightarrow{B C}=(2 \sqrt{2},-2,2)
\end{array} \quad \overrightarrow{B A} \times \overrightarrow{B C}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
0 & 3 & -3 \\
2 \sqrt{2} & -2 & 2
\end{array}\right|=\hat{\imath}(6-6)-\hat{\jmath}(0+6 \sqrt{2})+\hat{k}(0-6 \sqrt{2})=(0,-6 \sqrt{2} \\
& \text { Area }=\frac{1}{2}|\overrightarrow{B A} \times \overrightarrow{B C}|=\frac{1}{2} \sqrt{72+72}=\frac{1}{2} \sqrt{144}=6
\end{aligned}
$$

Problems 3 through 8 refer to the curve $\vec{r}(t)=\left(t^{2}, 2 t, \ln t\right)$:
3. Find the line tangent to the curve at the point $(1,2,0)$.
a. $(x, y, z)=(2+t, 2+2 t, 1)$
b. $(x, y, z)=(2+t, 2-2 t, 1)$
c. $(x, y, z)=(2+t,-2-2 t, 1)$
d. $(x, y, z)=(1+2 t, 2+2 t, t) \quad$ correct choice
e. $(x, y, z)=(1+2 t, 2-2 t, t)$

$$
\begin{aligned}
& \vec{r}(t)=\left(t^{2}, 2 t, \ln t\right) \quad \vec{v}(t)=\left(2 t, 2, \frac{1}{t}\right) \quad \vec{r}(1)=(1,2,0) \quad \vec{v}(1)=(2,2,1) \\
& X=P+t \vec{v} \quad(x, y, z)=\vec{r}(1)+t \vec{v}(1)=(1,2,0)+t(2,2,1)=(1+2 t, 2+2 t, t)
\end{aligned}
$$

4. Find the arc length of the curve between $(1,2,0)$ and $(4,4, \ln 2)$.

HINT: Look for a perfect square.
a. $3+\ln 2 \quad$ correct choice
b. $4+\ln 2$
c. $3+\ln 4$
d. $4+\ln 4$
e. $1+\ln 4$

$$
\begin{aligned}
& \vec{v}(t)=\left(2 t, 2, \frac{1}{t}\right) \quad|\vec{v}|=\sqrt{4 t^{2}+4+\frac{1}{t^{2}}}=\sqrt{\frac{4 t^{4}+4 t^{2}+1}{t^{2}}}=\sqrt{\frac{\left(2 t^{2}+1\right)^{2}}{t^{2}}}=\frac{2 t^{2}+1}{t}=2 t+\frac{1}{t} \\
& (1,2,0)=\vec{r}(1) \quad(4,4, \ln 2)=\vec{r}(2) \\
& L=\int_{1}^{2}|\vec{v}| d t=\int_{1}^{2}\left(2 t+\frac{1}{t}\right) d t=\left[t^{2}+\ln |t|\right]_{1}^{2}=(4+\ln 2)-(1)=3+\ln 2
\end{aligned}
$$

5. Find the tangential acceleration a_{T} of the curve.
a. $\frac{2 t^{2}+1}{t^{2}}$
b. $\frac{2 t^{2}-1}{t^{2}}$ correct choice
c. $\frac{4 t^{4}+1}{t^{2}}$
d. $\frac{4 t^{4}-1}{t^{2}}$
e. $2+\ln t$
$a_{T}=\vec{a} \cdot \hat{T}=\frac{1}{|\vec{v}|} \vec{a} \cdot \vec{v}=\frac{t}{2 t^{2}+1}\left(2,0,-\frac{1}{t^{2}}\right) \cdot\left(2 t, 2, \frac{1}{t}\right)=\frac{t}{2 t^{2}+1}\left(4 t-\frac{1}{t^{3}}\right)=\frac{t\left(4 t^{4}-1\right)}{t^{3}\left(2 t^{2}+1\right)}=\frac{2 t^{2}-1}{t^{2}}$
$a_{T}=\frac{d|\vec{v}|}{d t}=\frac{d}{d t}\left(2 t+\frac{1}{t}\right)=2-\frac{1}{t^{2}}=\frac{2 t^{2}-1}{t^{2}}$
6. Find the binormal vector \hat{B} of the curve.
a. $\left(\frac{-1}{2 t^{2}+1}, \frac{-2 t}{2 t^{2}+1}, \frac{-2 t^{2}}{2 t^{2}+1}\right)$
b. $\left(\frac{-1}{2 t^{2}+1}, \frac{2 t}{2 t^{2}+1}, \frac{-2 t^{2}}{2 t^{2}+1}\right) \quad$ correct choice
c. $\left(\frac{-2}{t^{2}}, \frac{-4}{t},-4\right)$
d. $\left(\frac{-2}{t^{2}}, \frac{4}{t},-4\right)$
e. $\left(-2,-4 t,-4 t^{2}\right)$

$$
\begin{aligned}
& \vec{v}(t)=\left(2 t, 2, \frac{1}{t}\right) \\
& \vec{a}(t)=\left(2,0,-\frac{1}{t^{2}}\right)
\end{aligned} \quad \vec{v} \times \vec{a}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 t & 2 & \frac{1}{t} \\
2 & 0 & -\frac{1}{t^{2}}
\end{array}\right|=\hat{\imath}\left(-\frac{2}{t^{2}}\right)-\hat{\jmath}\left(-\frac{2}{t}-\frac{2}{t}\right)+\hat{k}(-4)=\left(-\frac{2}{t^{2}}, \frac{4}{t},-4\right)
$$

$$
|\vec{v} \times \vec{a}|=\sqrt{\frac{4}{t^{4}}+\frac{16}{t^{2}}+16}=\sqrt{\frac{4+4 t^{2}+4 t^{4}}{t^{4}}}=2 \frac{2 t^{2}+1}{t^{2}}
$$

$$
\hat{B}=\frac{\vec{v} \times \vec{a}}{|\vec{v} \times \vec{a}|}=\frac{t^{2}}{2\left(2 t^{2}+1\right)}\left(-\frac{2}{t^{2}}, \frac{4}{t},-4\right)=\left(\frac{-1}{2 t^{2}+1}, \frac{2 t}{2 t^{2}+1}, \frac{-2 t^{2}}{2 t^{2}+1}\right)
$$

7. Find the mass of a wire in the shape of the curve between $(1,2,0)$ and $(4,4, \ln 2)$, if its linear mass density is $\rho=x+\frac{y}{2} e^{z}$.
a. 8
b. 12
c. 16
d. 18 correct choice
e. 20
$\rho=x+\frac{y}{2} e^{z}=t^{2}+t e^{\ln t}=2 t^{2} \quad|\vec{v}|=2 t+\frac{1}{t}$
$M=\int_{1}^{2} \rho|\vec{v}| d t=\int_{1}^{2} 2 t^{2}\left(2 t+\frac{1}{t}\right) d t=\int_{1}^{2}\left(4 t^{3}+2 t\right) d t=\left[t^{4}+t^{2}\right]_{1}^{2}=(16+4)-(1+1)=18$
8. Find the work done to move an object along the curve from $(1,2,0)$ to $(4,4, \ln 2)$, under the action of the force $\vec{F}=(y, x, x y)$.
a. $\frac{28}{3}$
b. $\frac{32}{3}$
c. $\frac{56}{3}$ correct choice
d. $\frac{64}{3}$
e. 27
$\vec{F}=(y, x, x y)=\left(2 t, t^{2}, 2 t^{3}\right) \quad \vec{v}(t)=\left(2 t, 2, \frac{1}{t}\right) \quad \vec{F} \cdot \vec{v}=4 t^{2}+2 t^{2}+2 t^{2}=8 t^{2}$
$W=\int_{1}^{2} \vec{F} \cdot \vec{v} d t=\int_{1}^{2} 8 t^{2} d t=\left[\frac{8}{3} t^{3}\right]_{1}^{2}=\frac{8}{3}(8-1)=\frac{56}{3}$
9. Find the plane which passes through the point $P=(2,4,-1)$ and is perpendicular to the line $(x, y, z)=(1+3 t, 2+t, 3+2 t)$. Its z-intercept is
a. -8
b. -4
c. -2
d. 4
correct choice
e. 8

The normal to the plane is the tangent to the line: $\quad \vec{N}=\vec{v}=(3,1,2)$
$\vec{N} \cdot X=\vec{N} \cdot P \quad 3 x+y+2 z=3(2)+(4)+2(-1)=8 \quad z=-\frac{3}{2} x-\frac{1}{2} y+4$
10. Find the point where the line $(x, y, z)=(1-3 t, 2+t, 1-2 t)$ intersects the plane $2 x+3 y-3 z=-1$. At this point $x+y+z=$
a. 12 correct choice
b. 6
c. 5
d. 4
e. -1

Plug the line into the plane: $\quad 2(1-3 t)+3(2+t)-3(1-2 t)=-1 \quad 5+3 t=-1 \quad t=-2$
Plug $t=-2$ into the line: $\quad(x, y, z)=(1-3(-2), 2+(-2), 1-2(-2))=(7,0,5) \quad$ So $\quad x+y+z=12$
11. Which of the following is the equation of the surface?
a. $x^{2}-y^{2}-z^{2}=0$
b. $x-y^{2}+z^{2}=0 \quad$ correct choice
c. $x+y^{2}-z^{2}=0$
d. $x-y^{2}-z^{2}=0$
e. $x+y^{2}+z^{2}=0$

This is a hyperbolic paraboloid.
(a) is a cone. (d) and (e) are elliptic paraboloids.

This hyperbolic paraboloid opens up in the $x y$-plane and down in the $x z$-plane, as in (b).
12. Which of the following is the function graphed?
a. $z=x^{2} y^{2} e^{-x^{2}-y^{2}}$
b. $z=\left(x^{2}-y^{2}\right) e^{-x^{2}-y^{2}}$
c. $z=\left(y^{2}-x^{2}\right) e^{-x^{2}-y^{2}}$
d. $z=x y e^{-x^{2}-y^{2}}$
e. $z=-x y e^{-x^{2}-y^{2}} \quad$ correct choice

The graph is zero on the axes, negative in quadrants I and III, and positive in quadrants II and IV. (a) is everywhere positive. (b) and (c) are non-zero on the axes. (d) is positive in quadrant I.
13. If $f(x, y)=y \sin (x y)$, which of the following is FALSE?
a. $f_{x}(1,2)=4 \cos (2)$
b. $f_{y}(1,2)=\sin (2)+2 \cos (2)$
c. $f_{x x}(1,2)=-4 \sin (2)+4 \cos (2) \quad$ correct choice
d. $f_{x y}(1,2)=4 \cos (2)-4 \sin (2)$
e. $f_{y y}(1,2)=2 \cos (2)-2 \sin (2)$
$f_{x}(x, y)=y^{2} \cos (x y) \quad f_{y}(x, y)=\sin (x y)+x y \cos (x y)$
$f_{x x}(x, y)=-y^{3} \sin (x y) \quad f_{x y}(x, y)=2 y \cos (x y)-x y^{2} \sin (x y) \quad f_{y y}(x, y)=2 x \cos (x y)-x^{2} y \sin (x y)$
$f_{x}(1,2)=4 \cos (2) \quad f_{y}(1,2)=\sin (2)+2 \cos (2)$
$f_{x x}(1,2)=-8 \sin (2) \quad f_{x y}(1,2)=4 \cos (2)-4 \sin (2) \quad f_{y y}(1,2)=2 \cos (2)-2 \sin (2)$
14. A function $f(x, y)$ satisfies: $f(3,4)=2, \quad f_{x}(3,4)=-2, \quad f_{y}(3,4)=3$.

Use the linear approximation to estimate $f(3.2,3.9)$.
a. -0.7
b. 1.3 correct choice
c. 2.7
d. 5.3
e. 7.3
$f(x, y) \approx f(3,4)+f_{x}(3,4)(x-3)+f_{y}(3,4)(y-4)=2-2(x-3)+3(y-4)$
$f(3.2,3.9) \approx 2-2(3.2-3)+3(3.9-4)=2-.4-.3=1.3$

Work Out: (Points indicated. Part credit possible. Show all work.)
15. (12 points) Duke Skywater is flying across the galaxy in the Millenium Eagle when he find himself passing through a dangerous polaron field. He is currently at the point $\vec{r}=(-1,1,2)$ and has velocity $\vec{v}=(0.1,-0.2,0.2)$ and the polaron density is $\rho=x z^{2}+y z^{3}$.
a. (8 pts) What is the polaron density and its rate of change as currently seen by Duke?
$\rho(-1,1,2)=-4+8=4$
$\vec{\nabla} \rho=\left(z^{2}, z^{3}, 2 x z+3 y z^{2}\right) \quad \vec{\nabla} \rho(-1,1,2)=(4,8,8)$
$\frac{d \rho}{d t}=\vec{v} \cdot \vec{\nabla} \rho=(0.1,-0.2,0.2) \cdot(4,8,8)=0.4-1.6+1.6=0.4$
b. (4 pts) In what unit vector direction should Duke travel to reduce the polaron density as fast as possible?

The polaron decreases fastest in the direction opposite to the gradient:
$\vec{w}=-\vec{\nabla} \rho(-1,1,2)=(-4,-8,-8) \quad|\vec{w}|=\sqrt{16+64+64}=\sqrt{144}=12$
The unit vector direction is

$$
\hat{w}=\frac{\vec{w}}{|\vec{w}|}=\frac{1}{12}(-4,-8,-8)=\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right)
$$

16. (12 points) The temperature around a candle is given by $T=110-x^{2}-y^{2}-2 z^{2}$.

Find the maximum temperature on the plane $4 x+6 y+8 z=42$ and the point where it occur.
METHOD 1: Lagrange Multipliers:
$\vec{\nabla} T=(-2 x,-2 y,-4 z) \quad g=4 x+6 y+8 z \quad \vec{\nabla} g=(4,6,8)$
Lagrange equations: $\quad \vec{\nabla} T=\lambda \vec{\nabla} g \quad(-2 x,-2 y,-4 z)=\lambda(4,6,8)$
$-2 x=4 \lambda \quad-2 y=6 \lambda \quad-4 z=8 \lambda$
$x=-2 \lambda \quad y=-3 \lambda \quad z=-2 \lambda \quad$ Plug into constraint, $g=42$:
$4(-2 \lambda)+6(-3 \lambda)+8(-2 \lambda)=42 \quad-42 \lambda=42 \quad \lambda=-1$
$(x, y, z)=(2,3,2) \quad T=110-4-9-8=89$
METHOD 2: Eliminate a variable:
$4 x+6 y+8 z=42 \quad x=\frac{21}{2}-\frac{3}{2} y-2 z \quad T=110-\left(\frac{21}{2}-\frac{3}{2} y-2 z\right)^{2}-y^{2}-2 z^{2}$
$T_{y}=-2\left(\frac{21}{2}-\frac{3}{2} y-2 z\right)\left(-\frac{3}{2}\right)-2 y=0 \quad T_{z}=-2\left(\frac{21}{2}-\frac{3}{2} y-2 z\right)(-2)-4 z=0$
$\frac{63}{2}-\frac{13}{2} y-6 z=0 \quad 42-6 y-12 z=0$
$13 y+12 z=63 \quad 6 y+12 z=42 \quad$ subtract $7 y=21 \quad y=3$
$12 z=42-6 y=42-18=24 \quad z=2$
$x=\frac{21}{2}-\frac{3}{2} y-2 z=\frac{21}{2}-\frac{9}{2}-4=2$
$(x, y, z)=(2,3,2) \quad T=110-4-9-8=89$
17. (12 points) Find an equation of the plane tangent to the graph of the function $f(x, y)=2 x^{2} y-x y^{2}$ at $(x, y)=(2,1)$. Then find its z-intercept.
$f(x, y)=2 x^{2} y-x y^{2} \quad f_{x}(x, y)=4 x y-y^{2} \quad f_{y}(x, y)=2 x^{2}-2 x y$
$f(2,1)=8-2=6 \quad f_{x}(2,1)=8-1=7 \quad f_{y}(2,1)=8-4=4$
$z=f(2,1)+f_{x}(2,1)(x-2)+f_{y}(2,1)(y-1)=6+7(x-2)+4(y-1)=7 x+4 y-12$
The z-intercept is $c=-12$.
18. (12 points) Find an equation of the plane tangent to the surface $x^{4}+x^{2} y^{2}+y^{2} z^{2}=21$ at the point $(x, y, z)=(1,-2,2)$. Then find its z-intercept.
$F=x^{4}+x^{2} y^{2}+y^{2} z^{2} \quad \vec{\nabla} F=\left(4 x^{3}+2 x y^{2}, 2 x^{2} y+2 y z^{2}, 2 y^{2} z\right) \quad \vec{N}=\vec{\nabla} F(1,-2,2)=(12,-20,16)$
$\vec{N} \cdot X=\vec{N} \cdot P \quad 12 x-20 y+16 z=12(1)-20(-2)+16(2)=84 \quad 3 x-5 y+4 z=21$
The z-intercept is $c=\frac{21}{4}$.

