\qquad Sec \qquad
MATH 253
Final Exam
Fall 2008
Sections 501-503,200
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-10$		$/ 50$	12
11		$/ 15$	13

1. Find a parametric equation of the line tangent to the curve $\vec{r}(\theta)=(2 \sin \theta, 2 \cos \theta, \theta)$ at the point $(0,-2, \pi)$.
a. $X(t)=(-2,-2 t, 1+\pi t)$
b. $X(t)=(0,-2 t-2, \pi+t)$
c. $X(t)=(-2 t,-2, \pi+t)$
d. $X(t)=(-2 t-2,0, \pi+t)$
e. $X(t)=(0,-2 t-2,1+\pi t)$
2. The density of the fog is given by $\rho=30-x^{2}-y^{2}-z$. If an airplane is at the position $(x, y, z)=(\sqrt{2}, 2,4)$, in what unit vector direction should the airplane initially travel to get out of the fog as quickly as possible?
a. $\left(\frac{-2 \sqrt{2}}{5}, \frac{-4}{5}, \frac{-1}{5}\right)$
b. $\left(\frac{2 \sqrt{2}}{5}, \frac{4}{5}, \frac{1}{5}\right)$
c. $\left(\frac{-\sqrt{2}}{\sqrt{10}}, \frac{-2}{\sqrt{10}}, \frac{-2}{\sqrt{10}}\right)$
d. $\left(\frac{\sqrt{2}}{\sqrt{10}}, \frac{2}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right)$
e. $\left(\frac{-\sqrt{2}}{\sqrt{10}}, \frac{2}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right)$
3. Find an equation of the plane tangent to the graph of the function $z=x^{2} y+x y^{2}$ at the point $(2,1)$.
a. $z=5 x+8 y+6$
b. $z=-5 x-8 y+6$
c. $z=-5 x-8 y+24$
d. $z=5 x+8 y-12$
e. $z=5 x+8 y-6$
4. Find an equation of the plane tangent to the level surface $x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}=49$ at the point $(1,2,3)$.
a. $13 x+20 y+15 z=98$
b. $13 x+10 y+5 z=48$
c. $13 x-10 y+5 z=8$
d. $13 x-20 y+15 z=18$
e. $39 x+20 y+5 z=94$
5. Find the equation of the plane tangent to the parametric surface $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, \theta)$ at the point where $(r, \theta)=(2, \pi)$.
a. $-x=-2 y+z$
b. $-x+2 y-z=-2+\pi$
c. $-x-2 y-z=-2+\pi$
d. $-y+2 z=2 \pi$
e. $y+2 z=2 \pi$
6. A satellite is travelling from East to West directly above the equator. In what direction does the binormal \hat{B} point?
a. North
b. South
c. Up
d. Down
e. West
7. Compute $\int_{P}^{Q} 2 x d x+2 y d y+2 z d z$ along the straight line from $P=(1,-2,2)$ to $Q=(3,-4,12)$. HINT: Use the Fundamental Theorem of Calculus for Curves.
a. -10
b. $\sqrt{10}$
c. 10
d. 108
e. 160
8. Compute $\oint 2 x d x+2 x y d y$ counterclockwise around the boundary of the rectangle $2 \leq x \leq 4$, $1 \leq y \leq 4$.
HINT: Use Green's Theorem.
a. 6
b. 18
c. 30
d. 36
e. 72
9. Compute $\iint_{\partial V} \vec{F} \cdot d \vec{S}$ over the complete boundary of the solid above the paraboloid $z=x^{2}+y^{2}$ and below the plane $z=4$ with outward normal, for the vector field $\vec{F}=\left(x y^{2}, y x^{2}, z^{2}\right)$.
HINT: Use Gauss' Theorem.
a. $-\frac{128}{3} \pi$

b. 40π
c. 72π
d. $\frac{160}{3} \pi$
e. $\frac{896}{15} \pi$
10. Find the area of one petal of the 4 leaf rose $r=\sin (4 \theta)$. The petal in the first quadrant.is shown.
a. $\frac{\pi}{16}$
b. $\frac{\pi}{8}$
c. $\frac{\pi}{4}$

d. $\frac{\pi}{2}$
e. π

Work Out: (Points indicated. Part credit possible. Show all work.)
11. (15 points) Find the point in the first octant on the graph of $4 x^{4} y^{2} z=1$ which is closest to the origin. HINTS: What is the square of the distance from a point to the origin? Lagrange multipliers are easier.
12. (25 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{s}$
for the cone C given by $z^{2}=x^{2}+y^{2}$ for $z \leq 2$ oriented down and out, and the vector field $\vec{F}=\left(y z^{2},-x z^{2}, z^{3}\right)$.

Be sure to check and explain the orientations.
Use the following steps:
a. Note: The cone may be parametrized as $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$

Compute the surface integral by successively finding:

$$
\vec{e}_{r}, \quad \vec{e}_{\theta}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(r, \theta)), \quad \iint_{C} \vec{\nabla} \times \vec{F} \cdot \vec{S}
$$

Recall $\vec{F}=\left(y z^{2},-x z^{2}, z^{3}\right)$.
b. Compute the line integral by parametrizing the boundary curve and successively finding:
$\vec{r}(\theta), \quad \vec{v}, \quad \vec{F}(\vec{r}(\theta)), \oint_{\partial C} \vec{F} \cdot d \vec{s}$
13. (15 points) Find the mass and center of mass of the $\frac{1}{8}$ of the sphere $x^{2}+y^{2}+z^{2} \leq 4$ in the first octant if the density is $\delta=x^{2}+y^{2}+z^{2}$.

