Name	S	Sec				
MATH 253 Fina			1-10	/50	12	/25
	Final Exam	Fall 2008	11		10	(1 E
Sections 501-503,200		P. Yasskin	11	/15	13	/15
Multiple Chaice: (5 paints each No part credit)				Total		/105
multiple choice. (5 p						

- **1**. Find a parametric equation of the line tangent to the curve $\vec{r}(\theta) = (2\sin\theta, 2\cos\theta, \theta)$ at the point $(0, -2, \pi)$.
 - **a**. $X(t) = (-2, -2t, 1 + \pi t)$
 - **b**. $X(t) = (0, -2t 2, \pi + t)$
 - **c**. $X(t) = (-2t, -2, \pi + t)$
 - **d**. $X(t) = (-2t 2, 0, \pi + t)$

e.
$$X(t) = (0, -2t - 2, 1 + \pi t)$$

2. The density of the fog is given by $\rho = 30 - x^2 - y^2 - z$. If an airplane is at the position $(x, y, z) = (\sqrt{2}, 2, 4)$, in what unit vector direction should the airplane initially travel to get out of the fog as quickly as possible?

a.
$$\left(\frac{-2\sqrt{2}}{5}, \frac{-4}{5}, \frac{-1}{5}\right)$$

b. $\left(\frac{2\sqrt{2}}{5}, \frac{4}{5}, \frac{1}{5}\right)$
c. $\left(\frac{-\sqrt{2}}{\sqrt{10}}, \frac{-2}{\sqrt{10}}, \frac{-2}{\sqrt{10}}\right)$
d. $\left(\frac{\sqrt{2}}{\sqrt{10}}, \frac{2}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right)$
e. $\left(\frac{-\sqrt{2}}{\sqrt{10}}, \frac{2}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right)$

- **3**. Find an equation of the plane tangent to the graph of the function $z = x^2y + xy^2$ at the point (2,1).
 - **a.** z = 5x + 8y + 6 **b.** z = -5x - 8y + 6 **c.** z = -5x - 8y + 24 **d.** z = 5x + 8y - 12**e.** z = 5x + 8y - 6

- **4**. Find an equation of the plane tangent to the level surface $x^2y^2 + x^2z^2 + y^2z^2 = 49$ at the point (1,2,3).
 - **a**. 13x + 20y + 15z = 98
 - **b.** 13x + 10y + 5z = 48
 - **c**. 13x 10y + 5z = 8
 - **d**. 13x 20y + 15z = 18
 - **e**. 39x + 20y + 5z = 94

- **5**. Find the equation of the plane tangent to the parametric surface $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$ at the point where $(r,\theta) = (2,\pi)$.
 - **a**. -x = -2y + z
 - **b**. $-x + 2y z = -2 + \pi$
 - **c**. $-x 2y z = -2 + \pi$
 - **d**. $-y + 2z = 2\pi$
 - **e**. $y + 2z = 2\pi$

- **6**. A satellite is travelling from East to West directly above the equator. In what direction does the binormal \hat{B} point?
 - a. North
 - **b**. South
 - **c**. Up
 - d. Down
 - e. West
- 7. Compute $\int_{P}^{Q} 2x \, dx + 2y \, dy + 2z \, dz$ along the straight line from P = (1, -2, 2) to Q = (3, -4, 12). HINT: Use the Fundamental Theorem of Calculus for Curves.
 - **a**. -10
 - **b**. $\sqrt{10}$
 - **c**. 10
 - **d**. 108
 - **e**. 160

- 8. Compute $\oint 2x \, dx + 2xy \, dy$ counterclockwise around the boundary of the rectangle $2 \le x \le 4$, $1 \le y \le 4$. HINT: Use Green's Theorem.
 - **a**. 6
 - **b**. 18
 - **c**. 30
 - **d**. 36
 - **e**. 72

9. Compute $\iint_{\partial V} \vec{F} \cdot d\vec{S}$ over the complete boundary of the solid

above the paraboloid $z = x^2 + y^2$ and below the plane z = 4 with outward normal, for the vector field $\vec{F} = (xy^2, yx^2, z^2)$. HINT: Use Gauss' Theorem.

a.
$$-\frac{128}{3}\pi$$

- **b**. 40π
- **c**. 72*π*
- **d**. $\frac{160}{3}\pi$
- **e**. $\frac{896}{15}\pi$

- **10**. Find the area of one petal of the 4 leaf rose $r = \sin(4\theta)$. The petal in the first quadrant.is shown.
 - **a**. $\frac{\pi}{16}$
 - **b**. $\frac{\pi}{8}$
 - c. $\frac{\pi}{4}$
 - **d**. $\frac{\pi}{2}$

e. π

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (15 points) Find the point in the first octant on the graph of $4x^4y^2z = 1$ which is closest to the origin. HINTS: What is the square of the distance from a point to the origin? Lagrange multipliers are easier.

- **12**. (25 points) Verify Stokes' Theorem $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{s}$ for the cone *C* given by $z^2 = x^2 + y^2$ for $z \le 2$ oriented down and out, and the vector field $\vec{F} = (yz^2, -xz^2, z^3)$. Be sure to check and explain the orientations. Use the following steps:
 - **a**. Note: The cone may be parametrized as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$ Compute the surface integral by successively finding:

$$\vec{e}_r, \ \vec{e}_\theta, \ \vec{N}, \ \vec{\nabla} \times \vec{F}, \ \vec{\nabla} \times \vec{F} \Big(\vec{R}(r,\theta) \Big), \ \iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$$

Recall $\vec{F} = (yz^2, -xz^2, z^3).$

b. Compute the line integral by parametrizing the boundary curve and successively finding:

$$\vec{r}(\theta), \quad \vec{v}, \quad \vec{F}(\vec{r}(\theta)), \quad \oint_{\partial C} \vec{F} \cdot d\vec{s}$$

13. (15 points) Find the mass and center of mass of the $\frac{1}{8}$ of the sphere $x^2 + y^2 + z^2 \le 4$ in the first octant if the density is $\delta = x^2 + y^2 + z^2$.