Name_____ Sec____

MATH 253 Exam 1

Fall 2009

Sections 501,503

P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1-11	/66	13	/10
12	/20	14	/10
		Total	/106

- 1. If $f(x,y) = x^2 \cos(y^2)$, which of the following is FALSE?
 - **a.** $f_x(x,y) = 2x\cos(y^2)$
 - **b.** $f_{y}(x,y) = -2x^{2}y\sin(y^{2})$
 - **c.** $f_{xx}(x,y) = 2\cos(y^2)$
 - **d**. $f_{yy}(x,y) = -4x^2y\cos(y^2)$
 - **e**. $f_{xy}(x,y) = -4xy\sin(y^2)$
- **2**. The quadratic surface $x^2 y^2 + z^2 4x 6y 10z + 16 = 0$ is a
 - **a**. hyperboloid of 1 sheet and center (2,3,5)
 - **b**. hyperboloid of 1 sheet and center (2,-3,5)
 - **c**. hyperboloid of 2 sheets and center (2,3,5)
 - **d**. hyperboloid of 2 sheets and center (2,-3,5)
 - **e**. cone with vertex (2,3,5)

3. An airplane is travelling due North at constant speed and a constant altitude as it crosses the equator. In what direction does the \hat{B} vector point?

HINTS: Remember the Earth is curved. Ignore the rotation of the Earth.

- a. East
- b. West
- c. South
- d. Up
- e. Down

- **4**. A triangle has edge vectors $\overrightarrow{AB} = (2, 1, -2)$ and $\overrightarrow{AC} = (-2, -2, 4)$. Find the altitude of the triangle if \overrightarrow{AB} is the base.
 - **a**. $\frac{2\sqrt{5}}{3}$
 - **b**. $\frac{\sqrt{5}}{3}$
 - **c**. $2\sqrt{5}$
 - **d**. $\sqrt{5}$
 - **e**. $3\sqrt{5}$

- **5**. A box slides down the helical ramp $\vec{r}(t) = (4\cos t, 4\sin t, 9 3t)$ starting at height z = 9 and ending at height z = 0. How far does the box slide?
 - **a**. 3
 - **b**. 5
 - **c**. 15
 - **d**. 25
 - **e**. 75

- **6**. A box slides down the helical ramp $\vec{r}(t) = (4\cos t, 4\sin t, 9 3t)$ starting at height z = 9 and ending at height z = 0 under the action of the force $\vec{F} = (-yz, xz, 5z)$. Find the work done on the box.
 - **a**. $\frac{9}{2}$
 - **b**. 9
 - **c**. $\frac{25}{2}$
 - **d**. $\frac{27}{2}$
 - **e**. 27

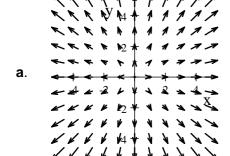
- 7. The diameter and height of a cylindrical trash can (no lid) are measured as D=30 cm and h=40 cm. The metal is 0.2 cm thick. Use differentials to estimate the volume of metal used to make the can.
 - **a**. $165\pi \text{ cm}^3$
 - **b**. $210\pi \text{ cm}^3$
 - **c**. $285\pi \text{ cm}^3$
 - **d**. $330\pi \text{ cm}^3$
 - **e**. $525\pi \text{ cm}^3$

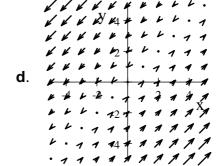
- **8**. Find the equation of the plane tangent to the surface $z = x^3y^2$ at the point (2,1). Then the *z*-intercept is z =
 - **a**. -40
 - **b**. 8
 - **c**. -8
 - **d**. 32
 - **e**. −32

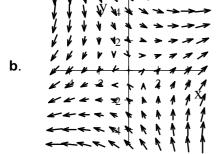
- **9**. Find the equation of the plane tangent to the surface $12xyz z^3 = 45$ at the point (1,2,3). Then the *z*-intercept is z =
 - **a**. 135
 - **b**. 45
 - **c**. $-\sqrt[3]{6}$
 - **d**. -45
 - **e**. -135

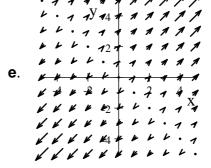
- **10**. Starting from the point (1,-2), find the maximum rate at which the function $f(x,y) = x^2y^3$ increases.
 - **a**. 20
 - **b**. 25
 - **c**. 400
 - **d**. (-16, 12)
 - **e**. (16,-12)

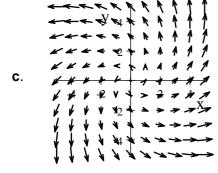
11. Which of the following is the plot of the vector field F(x,y) = (x+y,x-y)?











Work Out: (Points indicated. Part credit possible. Show all work.)

- **12**. (20 points) Find the point on the curve $\vec{r}(t) = (e^t, \sqrt{2}t, e^{-t})$ where the curvature is a local maximum or local minimum. Is it a local maximum or local minimum?
 - HINTS: First find the curvature $\kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}$. Then find the critical point and apply the first or second derivative test.

13. (10 points) The pressure, P, density, D, and temperature, T, of a certain ideal gas are related by P = 4DT. A fly is currently at the point $\vec{r}(t_0) = (3,2,4)$ and has velocity $\vec{v}(t_0) = (2,1,2)$. At the point (3,2,4), the density and temperature and their gradients are

$$D = 50 \qquad \overrightarrow{\nabla}D = \left(\frac{\partial D}{\partial x}, \frac{\partial D}{\partial y}, \frac{\partial D}{\partial z}\right) = (0.1, 0.4, 0.2)$$

$$T = 300 \qquad \overrightarrow{\nabla}T = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right) = (2, 3, 1)$$

Find the time rate of change of the pressure, $\frac{dP}{dt}$, as seen by the fly.

14. (10 points) Suppose p = p(x, y), while x = x(u, v) and y = y(u, v). Further, you know the following information:

$$x(2,1) = 3 y(2,1) = 4 p(2,1) = 13 p(3,4) = 14$$

$$\frac{\partial p}{\partial x}(2,1) = 5 \frac{\partial p}{\partial y}(2,1) = 6 \frac{\partial p}{\partial x}(3,4) = 7 \frac{\partial p}{\partial y}(3,4) = 8$$

$$\frac{\partial x}{\partial u}(2,1) = 9 \frac{\partial x}{\partial v}(2,1) = 10 \frac{\partial x}{\partial u}(3,4) = 11 \frac{\partial x}{\partial v}(3,4) = 12$$

$$\frac{\partial y}{\partial u}(2,1) = 18 \frac{\partial y}{\partial v}(2,1) = 17 \frac{\partial y}{\partial u}(3,4) = 16 \frac{\partial y}{\partial v}(3,4) = 15$$

a. Write out the chain rule for $\frac{\partial p}{\partial u}$.

b. Then use it and the above information to compute $\frac{\partial p}{\partial u}(2,1)$.