Name						
			1-11	/44	14	/10
MATH 253	Final	Fall 2009	12	/15	15	/20
Section 501,503	1,503	P. Yasskin				
Multiple Choice: (4 points each. No		part credit.)	13	/15	Total	/104
1. Find the point where the line $x = 1 + 2t$, $y = 8 - 3t$, $z = 2 - 2t$ intersects the plane $x - y + z = 1$. At this point $x + y + z =$						
a . 9						
b . 5						
c . 2						
d . 1						
e . 0						
2 . Find the plane tang	ent to the gr	aph of $z = \cos(x + 2y)$ at the	e point	$\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$.	The <i>z</i> -ir	ntercept is
a. 0 b. $\frac{\pi}{6}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$						

e. π

3. Find the plane tangent to the surface $\frac{x}{z} + \frac{z}{y} = 5$ at the point P = (6, 1, 3). The *z*-intercept is

- **a**. (0,0,0)
- **b**. (0,0,-5)
- **c**. (0,0,5)
- **d**. (0, 0, -10)
- **e**. (0,0,10)

- **4**. A circuit has two resistors $R_1 = 200 \Omega$ and $R_2 = 300 \Omega$ in parallel. The net resistance R satisfies $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If R_1 is increasing at 2Ω /sec and R_2 is decreasing at 9Ω /sec at what rate is *R* changing?
 - a. $\frac{9}{50} \Omega/\text{sec}$ **b**. $\frac{18}{25} \Omega$ /sec c. $-\frac{9}{50} \Omega/\text{sec}$ d. $-\frac{9}{25} \Omega/\text{sec}$ e. $-\frac{18}{25} \Omega/\text{sec}$
- 5. Ham Duet is flying the Millenium Eagle through a galactic dust storm. Currently, his position is P = (10, -20, 30) and his velocity is $\vec{v} = (4, -12, 3)$. He measures that currently the dust density is $\rho = 500$ and its gradient is $\vec{\nabla}\rho = (-2, 1, 2)$. Find the current rate of change of the dust density as seen by Ham.
 - **a**. 514
 - **b**. 486
 - **c**. 28
 - **d**. 14
 - **e**. −14
- 6. Under the same conditions as in #5, in what unit vector direction should Ham travel to decrease the dust density as quickly as possible?
 - **a**. (-2, 1, 2)
 - **b**. (2, -1, -2)
 - **c**. $\left(\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}\right)$
 - **d**. $\left(\frac{4}{13}, \frac{-12}{13}, \frac{3}{13}\right)$ **e**. $\left(\frac{-4}{13}, \frac{12}{13}, \frac{-3}{13}\right)$

- 7. The point (1,-2) is a critical point of the function $f = x^2y^2 + \frac{8}{x} \frac{16}{y}$. Use the Second Derivative Test to classify the point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails
- 8. Compute $\oint \vec{F} \cdot d\vec{s}$ counterclockwise around the circle $x^2 + y^2 = 4$ for $\vec{F} = (x^4 y^3, y^4 + x^3)$. HINT: Use the Fundamental Theorem of Calculus for Curves or Green's Theorem.
 - **a**. 0
 - **b**. 8π
 - **c**. 16π
 - **d**. 24π
 - **e**. 32π
- 9. The surface of an apple A may be given in spherical coordinates by ρ = 1 − cos φ and may be parametrized by R(φ, θ) = ((1 − cos φ) sin φ cos θ, (1 − cos φ) sin φ sin θ, (1 − cos φ) cos φ).
 Compute ∬ ∇ × F ⋅ dS over the apple with outward normal for F = (xyz², yzx², zxy²).
 HINT: Use Stokes' Theorem or Gauss' Theorem.
 - **a**. 0
 - **b**. 4π
 - **c**. 12π
 - **d**. $\frac{32}{3}\pi$
 - **e**. $\frac{64}{3}\pi$

- **10.** Find the mass of the spiral $\vec{r}(\theta) = (\theta \cos \theta, \theta \sin \theta)$ for $0 \le \theta \le 6\pi$ if the linear density is $\rho = \sqrt{x^2 + y^2}$.
 - **a.** $\frac{1}{2} \ln \left(6\pi + \sqrt{1 + 36\pi^2} \right) + 3\pi \sqrt{1 + 36\pi^2}$ **b.** $\frac{1}{2} \ln \left(6\pi + \sqrt{1 + 6\pi} \right) - 3\pi \sqrt{1 + 6\pi}$ **c.** $\frac{1}{2} \ln \left(6\pi + \sqrt{1 + 6\pi} \right) + 3\pi \sqrt{1 + 6\pi}$ **d.** $\frac{1}{3} (1 + 36\pi^2)^{3/2} - \frac{1}{3}$ **e.** $\frac{1}{3} (1 + 6\pi)^{3/2} - \frac{1}{3}$

- **11.** Use Stokes' Theorem to compute $\oint \vec{F} \cdot d\vec{s}$ around the triangle with vertices A = (2,0,0), B = (0,3,0) and C = (0,0,6), traversed from A to B to C to A for $\vec{F} = (y,z,x)$. Note: The plane of the triangle may be parametrized as $\vec{R}(x,y) = (x,y,6-3x-2y)$.

 - **a**. -24
 - **b**. -18
 - **c**. 12
 - **d**. 18
 - **e**. 24

12. (15 points) Compute $\iint_D y^2 dx dy$ over

the "diamond shaped" region D in the first quadrant bounded by the hyperbolas

$$y = \frac{1}{x}$$
 and $y = \frac{4}{x}$

and the lines

y = 2xy = xand

HINT: Use the coordinates u = xy, $v = \frac{y}{x}$. Solve for x and y.

13. (15 points) Find the volume and *z*-component of the centroid (center of mass with $\rho = 1$) of the solid between the surfaces $z = (x^2 + y^2)^{3/2}$ and z = 8.

14. (10 points) Find the point in the first octant on the graph of $xy^2z^4 = 32$ which is closest to the origin.

HINTS: What is the square of the distance from a point to the origin? Lagrange multipliers are easier.

15. (20 points) Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$ for the vector field $\vec{F} = (xy^2, yx^2, z^3)$ and the volume above the cone $z = \sqrt{x^2 + y^2}$ and below the plane z = 2. Use the following steps:

a. Compute the volume integral:

$$\nabla \cdot F =$$
$$\iiint_V \nabla \cdot \vec{F} \, dV =$$

b. Compute the surface integral over the disk using the parametrization

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 2)$$
:
 $\vec{e}_r =$
 $\vec{e}_{\theta} =$
 $\vec{N} =$

 $\vec{F}\left(\vec{R}(r,\theta)\right) = \iint_{D} \vec{F} \cdot d\vec{S} =$

Continued

Recall: $\vec{F} = (xy^2, yx^2, z^3)$

c. Compute the surface integral over the cone using the parametrization

 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r):$ $\vec{e}_r =$ $\vec{e}_{\theta} =$ $\vec{N} =$ $\vec{F}(\vec{R}(r,\theta)) =$

$$\iint_C \vec{F} \cdot d\vec{S} =$$

d. Compute the surface integral over the total boundary:

$$\iint_{\partial V} \vec{F} \cdot d\vec{S} =$$