Name \qquad
MATH 253
Final
Fall 2009
Section 501,503
P. Yasskin

Multiple Choice: (4 points each. No part credit.)

$1-11$	$/ 44$	14	$/ 10$
12	$/ 15$	15	$/ 20$
13	$/ 15$	Total	$/ 104$

1. Find the point where the line $x=1+2 t, \quad y=8-3 t, \quad z=2-2 t$ intersects the plane $x-y+z=1$. At this point $x+y+z=$
a. 9
b. 5
c. 2
d. 1
e. 0
2. Find the plane tangent to the graph of $z=\cos (x+2 y)$ at the point $\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$. The z-intercept is
a. 0
b. $\frac{\pi}{6}$
c. $\frac{\pi}{3}$
d. $\frac{\pi}{2}$
e. π
3. Find the plane tangent to the surface $\frac{x}{z}+\frac{z}{y}=5$ at the point $P=(6,1,3)$. The z-intercept is
a. $(0,0,0)$
b. $(0,0,-5)$
c. $(0,0,5)$
d. $(0,0,-10)$
e. $(0,0,10)$
4. A circuit has two resistors $R_{1}=200 \Omega$ and $R_{2}=300 \Omega$ in parallel. The net resistance R satisfies $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$. If R_{1} is increasing at $2 \Omega / \mathrm{sec}$ and R_{2} is decreasing at $9 \Omega / \mathrm{sec}$ at what rate is R changing?
a. $\frac{9}{50} \Omega / \mathrm{sec}$
b. $\frac{18}{25} \Omega / \mathrm{sec}$
c. $-\frac{9}{50} \Omega / \mathrm{sec}$
d. $-\frac{9}{25} \Omega / \mathrm{sec}$
e. $-\frac{18}{25} \Omega / \mathrm{sec}$
5. Ham Duet is flying the Millenium Eagle through a galactic dust storm. Currently, his position is $P=(10,-20,30)$ and his velocity is $\vec{v}=(4,-12,3)$. He measures that currently the dust density is $\rho=500$ and its gradient is $\vec{\nabla} \rho=(-2,1,2)$. Find the current rate of change of the dust density as seen by Ham.
a. 514
b. 486
c. 28
d. 14
e. -14
6. Under the same conditions as in \#5, in what unit vector direction should Ham travel to decrease the dust density as quickly as possible?
a. $(-2,1,2)$
b. $(2,-1,-2)$
c. $\left(\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}\right)$
d. $\left(\frac{4}{13}, \frac{-12}{13}, \frac{3}{13}\right)$
e. $\left(\frac{-4}{13}, \frac{12}{13}, \frac{-3}{13}\right)$
7. The point $(1,-2)$ is a critical point of the function $f=x^{2} y^{2}+\frac{8}{x}-\frac{16}{y}$. Use the Second Derivative Test to classify the point.
a. Local Minimum
b. Local Maximum
c. Inflection Point
d. Saddle Point
e. Test Fails
8. Compute $\oint \vec{F} \cdot d \vec{s}$ counterclockwise around the circle $x^{2}+y^{2}=4$ for $\vec{F}=\left(x^{4}-y^{3}, y^{4}+x^{3}\right)$. HINT: Use the Fundamental Theorem of Calculus for Curves or Green's Theorem.
a. 0
b. 8π
c. 16π
d. 24π
e. 32π
9. The surface of an apple A may be given in spherical coordinates by $\rho=1-\cos \varphi$ and may be parametrized by $\quad R(\phi, \theta)=((1-\cos \varphi) \sin \varphi \cos \theta,(1-\cos \varphi) \sin \varphi \sin \theta,(1-\cos \varphi) \cos \varphi)$.
Compute $\iint \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ over the apple with outward normal for $\vec{F}=\left(x y z^{2}, y z x^{2}, z x y^{2}\right)$.
HINT: Use Stokes' Theorem or Gauss' Theorem.
a. 0
b. 4π
c. 12π
d. $\frac{32}{3} \pi$
e. $\frac{64}{3} \pi$
10. Find the mass of the spiral $\vec{r}(\theta)=(\theta \cos \theta, \theta \sin \theta)$ for $0 \leq \theta \leq 6 \pi$ if the linear density is $\rho=\sqrt{x^{2}+y^{2}}$.
a. $\frac{1}{2} \ln \left(6 \pi+\sqrt{1+36 \pi^{2}}\right)+3 \pi \sqrt{1+36 \pi^{2}}$
b. $\frac{1}{2} \ln (6 \pi+\sqrt{1+6 \pi})-3 \pi \sqrt{1+6 \pi}$
c. $\frac{1}{2} \ln (6 \pi+\sqrt{1+6 \pi})+3 \pi \sqrt{1+6 \pi}$
d. $\frac{1}{3}\left(1+36 \pi^{2}\right)^{3 / 2}-\frac{1}{3}$
e. $\frac{1}{3}(1+6 \pi)^{3 / 2}-\frac{1}{3}$
11. Use Stokes' Theorem to compute $\oint \vec{F} \cdot d \vec{s}$ around the triangle with vertices $A=(2,0,0)$, $B=(0,3,0)$ and $C=(0,0,6)$, traversed from A to B to C to A for $\vec{F}=(y, z, x)$.
Note: The plane of the triangle may be parametrized as $\vec{R}(x, y)=(x, y, 6-3 x-2 y)$.
a. -24
b. -18
c. 12
d. 18
e. 24
12. (15 points) Compute $\iint_{D} y^{2} d x d y$ over the "diamond shaped" region D in the first quadrant bounded by the hyperbolas

$$
y=\frac{1}{x} \quad \text { and } \quad y=\frac{4}{x}
$$

and the lines
$y=x \quad$ and $\quad y=2 x$
HINT: Use the coordinates $u=x y, \quad v=\frac{y}{x}$.

Solve for x and y.
13. (15 points) Find the volume and z-component of the centroid (center of mass with $\rho=1$) of the solid between the surfaces

$$
z=\left(x^{2}+y^{2}\right)^{3 / 2} \quad \text { and } \quad z=8
$$

14. (10 points) Find the point in the first octant on the graph of $x y^{2} z^{4}=32$ which is closest to the origin.

HINTS: What is the square of the distance from a point to the origin? Lagrange multipliers are easier.
15. (20 points) Verify Gauss' Theorem $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}$ for the vector field $\vec{F}=\left(x y^{2}, y x^{2}, z^{3}\right)$ and the volume above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=2$. Use the following steps:

a. Compute the volume integral:

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{F}= \\
& \iiint_{V} \vec{\nabla} \cdot \vec{F} d V=
\end{aligned}
$$

b. Compute the surface integral over the disk using the parametrization
$\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 2):$
$\vec{e}_{r}=$
$\vec{e}_{\theta}=$
$\vec{N}=$
$\vec{F}(\vec{R}(r, \theta))=$
$\iint_{D} \vec{F} \cdot d \vec{S}=$

Recall: $\quad \vec{F}=\left(x y^{2}, y x^{2}, z^{3}\right)$
c. Compute the surface integral over the cone using the parametrization $\vec{R}(r, \theta)=(r \cos \theta, \quad r \sin \theta, r):$
$\vec{e}_{r}=$
$\vec{e}_{\theta}=$
$\vec{N}=$
$\vec{F}(\vec{R}(r, \theta))=$
$\iint_{C} \vec{F} \cdot d \vec{S}=$
d. Compute the surface integral over the total boundary:

$$
\iint_{\partial V} \vec{F} \cdot d \vec{S}=
$$

