Section	Name	ID

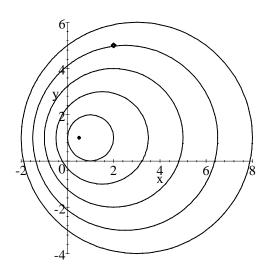
MATH 253 Sections 501-503

EXAM 1

Spring 1998 P. Yasskin

Problems 1 – 3: Find the plane tangent to the the graph of the function $f(x,y) = \frac{36}{1 + x^2 + y^2}$ at the point (x,y) = (1,2). Write the equation of the plane in the form z = Ax + By + C and find the values of *A*, *B* and *C* in problems 1, 2 and 3:

- **1**. (3 points) A =
 - **a**. –4
 - **b**. -2
 - **c**. 0
 - **d**. 2
 - **e**. 4
- **2**. (3 points) *B* =
 - **a**. -4
 - **b**. -2
 - **c**. 0
 - **d**. 2
 - **e**. 4
- **3**. (3 points) *C* =
 - **a**. -4
 - **b**. 3
 - **c**. 6
 - **d**. 9
 - **e**. 16


4. (3 points) If the function $f(x,y) = \frac{36}{1+x^2+y^2}$ represents the height of a mountain and you are at the point (x,y) = (1,2), in what direction should you walk to go directly **down** hill?

- **a**. (-4, -2)
- **b**. (-2, -4)
- **c**. (4,2)
- **d**. (2,4)
- e. None of these

Problems 5 – 7: Find the plane tangent to the the graph of the equation $xe^{z} + ze^{xy} = 2$ at the point (x, y, z) = (0, 1, 2). Write the equation of the plane in the form z = Ax + By + Cand find the values of *A*, *B* and *C* in problems 5, 6 and 7:

- **5**. (3 points) A =
 - **a**. -2 e**b.** 2 + *e* **c**. $-2 - e^2$ **d.** $2 - e^2$
 - **e**. 0
- **6**. (3 points) B =
 - **a**. -2 e
 - **b.** 2 + *e*
 - **c**. $-2 e^2$
 - **d**. $2 e^2$
 - **e**. 0
- **7**. (3 points) *C* =
 - **a**. 2
 - **b**. *–e*

 - **c**. $\frac{1}{e}$ **d**. $\frac{2}{e}$
 - **e**. *e*²
- **8**. (5 points) Below is the contour plot of a function f(x, y). If you start at the point (2,5) and move along a curve whose tangent vector is always $\vec{v} = \vec{\nabla} f$, draw the curve in the plot.

9. (12 points) Find all critical points of the function $f(x,y) = 1 + 2xy - x^2 - \frac{1}{9}y^3$ and classify each as a local maximum, a local minimum or a saddle point.

10. (12 points) Find the point on the paraboloid $z - \frac{1}{2}x^2 - \frac{1}{2}y^2 = 0$ which is closest to the point (1,2,1).

1-7	
8	
9	
10	