\qquad ID \qquad

MATH 253
EXAM 1
Spring 1998
Sections 501-503
P. Yasskin

Problems 1 - 3: Find the plane tangent to the the graph of the function $f(x, y)=\frac{36}{1+x^{2}+y^{2}}$ at the point $(x, y)=(1,2)$. Write the equation of the plane in the form $z=A x+B y+C$ and find the values of A, B and C in problems 1,2 and 3 :

1. (3 points) $A=$
a. -4
b. -2
c. 0
d. 2
e. 4
2. (3 points) $B=$
a. -4
b. -2
c. 0
d. 2
e. 4
3. (3 points) $C=$
a. -4
b. 3
c. 6
d. 9
e. 16
4. (3 points) If the function $f(x, y)=\frac{36}{1+x^{2}+y^{2}}$ represents the height of a mountain and you are at the point $(x, y)=(1,2)$, in what direction should you walk to go directly down hill?
a. $(-4,-2)$
b. $(-2,-4)$
c. $(4,2)$
d. $(2,4)$
e. None of these

Problems 5-7: Find the plane tangent to the the graph of the equation $x e^{z}+z e^{x y}=2$ at the point $(x, y, z)=(0,1,2)$. Write the equation of the plane in the form $z=A x+B y+C$ and find the values of A, B and C in problems 5, 6 and 7:
5. (3 points) $A=$
a. $-2-e$
b. $2+e$
c. $-2-e^{2}$
d. $2-e^{2}$
e. 0
6. (3 points) $B=$
a. $-2-e$
b. $2+e$
c. $-2-e^{2}$
d. $2-e^{2}$
e. 0
7. (3 points) $C=$
a. 2
b. $-e$
c. $\frac{1}{e}$
d. $\frac{2}{e}$
e. e^{2}
8. (5 points) Below is the contour plot of a function $f(x, y)$. If you start at the point $(2,5)$ and move along a curve whose tangent vector is always $\vec{v}=\vec{\nabla} f$, draw the curve in the plot.

9. (12 points) Find all critical points of the function $f(x, y)=1+2 x y-x^{2}-\frac{1}{9} y^{3}$ and classify each as a local maximum, a local minimum or a saddle point.
10. (12 points) Find the point on the paraboloid $z-\frac{1}{2} x^{2}-\frac{1}{2} y^{2}=0$ which is closest to the point $(1,2,1)$.

$1-7$	
8	
9	
10	

