ID_____ Section____ Name____

MATH 253 Honors

EXAM 1

Fall 2002

Sections 201-202

P. Yasskin

1-8	/64
9	/18
10	/18

Multiple Choice: (8 points each)

- **1.** Find the area of the triangle with vertices A = (2,-1,3), B = (3,-2,1), and C = (1,3,2).

 - **b.** $\frac{75^2}{2}$ **c.** $\sqrt{99}$

 - **d.** 75
 - **e.** $\frac{\sqrt{75}}{2}$

- **2.** A light ray travelling along the line x = 2 t, y = 3 + 2t, z = 4 2t strikes a mirror in the plane x + y - z = 7 at the point (0,7,0). Find the angle of incidence, i.e. the angle between the tangent vector to the line and the normal to the plane.
 - **a.** $\arccos\left(\frac{1}{\sqrt{2}}\right)$
 - **b.** $arccos(\frac{1}{2})$
 - **c.** $\arccos\left(\frac{1}{\sqrt{3}}\right)$
 - **d.** $arccos\left(\frac{\sqrt{3}}{2}\right)$
 - **e.** $arccos(\frac{1}{3})$

3. Find the arc length of the curve $\vec{r}(t) = \left(\frac{2}{3}t^3, t^2, t\right)$ for $0 \le t \le 1$.

HINT: Look for a perfect square.

- **a.** $\frac{5}{6}$
- **b.** 1
- **c.** $\frac{5}{4}$
- **d.** $\frac{5}{3}$
- **e.** $\frac{5}{2}$

- **4.** If a jet plane is travelling from East to West directly above the Equator, in which direction does the binormal \hat{B} point?
 - a. North
 - **b.** South
 - c. East
 - d. West
 - e. Down
- **5.** Which of the following is the contour plot of $z = x + y^2$?

- **6.** Compute the gradient of the function $f(x,y) = x^3 \cos 2y$ at the point $(x,y) = \left(2, \frac{\pi}{6}\right)$.
 - **a.** $(6, -8\sqrt{3})$
 - **b.** $(6\sqrt{3}, -8)$
 - **c.** $(-6\sqrt{3}, 4)$
 - **d.** $(-6, 8\sqrt{3})$
 - **e.** $(6, -4\sqrt{3})$

- **7.** Find the equation of the plane tangent to the graph of $z = xy^2$ at the point (x,y) = (2,1).
 - **a.** z = x + 4y 6
 - **b.** z = x + 4y 4
 - **c.** z = -x 4y + 2
 - **d.** z = -x 4y + 6
 - **e.** z = -x 4y + 8

- **8.** If g(3,4) = 7 and $\frac{\partial g}{\partial x}(3,4) = 0.5$ and $\frac{\partial g}{\partial y}(3,4) = -0.2$, estimate g(2.8,4.3).
 - **a.** .16
 - **b.** .54
 - **c.** 7.16
 - **d.** 7.54
 - **e.** 6.84

9. (18 points) Suppose $f = \frac{xz}{y}$ where x = x(u,v), y = y(u,v) and z = z(u,v). Further suppose x(1,2) = 4, y(1,2) = 6, z(1,2) = 3 and $\frac{\partial x}{\partial u}(1,2) = 3$, $\frac{\partial y}{\partial u}(1,2) = -2$, $\frac{\partial z}{\partial u}(1,2) = 5$, $\frac{\partial x}{\partial v}(1,2) = 4$, $\frac{\partial y}{\partial v}(1,2) = 3$, $\frac{\partial z}{\partial v}(1,2) = -3$ Compute $\frac{\partial f}{\partial v}(1,2)$.

