Name	ID	Section	1-5	/40	8	/20
MATH 253 Honors	Final Exam	Fall 2002	6	/10	9	/10
Sections 201-202		P. Yasskin	7	/10	10	/10

Multiple Choice: (8 points each) Work Out: (points indicated)

- **1.** Find the volume of the parallelepiped with edges $\vec{u} = (1,0,3), \vec{v} = (0,2,-1)$ and $\vec{w} = (2,0,2).$
 - **a.** -8
 - **b.** -4
 - **c.** 4
 - **d.** 8
 - **e.** 16

- **2.** Duke Skywater is flying the Millenium Eagle through a polaron field. His galactic coordinates are (2300, 4200, 1600) measured in lightseconds and his velocity is $\vec{v} = (.2, .3, .4)$ measured in lightseconds per second. He measures the strength of the polaron field is p = 274 milliwookies and its gradient is $\vec{\nabla}p = (3, 2, 2)$ milliwookies per lightsecond. Assuming a linear approximation for the polaron field and that his velocity is constant, how many seconds will Duke need to wait until the polaron field has grown to 286 milliwookies?
 - **a.** 2
 - **b.** 3
 - **c.** 4
 - **d.** 6
 - **e.** 12

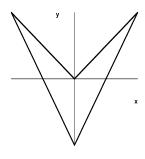
- **3.** Find the plane tangent to the hyperbolic paraboloid x = yz at the point P = (6,3,2). Which of the following points does **not** lie on this plane?
 - **a.** (-6,0,0)
 - **b.** (0,3,0)
 - **c.** (0,0,2)
 - **d.** (-1,1,1)
 - **e.** (1,-1,-1)

- **4.** A airplane is circling with constant speed above Kyle Field along the curve $\vec{r}(t) = (\cos(8\pi t), \sin(8\pi t), 2)$ where distances are in miles and time is in hours. Find the tangential acceleration a_T , where the acceleration is $\vec{a} = a_T \hat{T} + a_N \hat{N}$.
 - **a**. 0
 - **b.** 8π
 - c. -8π
 - **d.** $64\pi^2$
 - **e.** $-64\pi^2$

- **5.** Find the volume below the plane z = 6 2y above the triangle with vertices (0,0,0), (1,0,0) and (0,3,0).
 - **a.** 3
 - **b.** 6
 - **c.** 9
 - **d.** 12
 - **e.** 15

6. (10 points) Find the location and value of the minimum of the function $f(x,y,z) = x^2 + 2y^2 + 3z^2$ on the plane x + y + z = 11.

7. (10 points) Consider the region between the curves y=2|x|-2 and y=|x|. If the density is $\delta=2+2y$ compute the mass and y-component of the center of mass of this region. (7 points for setup. 3 points for evaluation.)



8. (20 points) **Stokes' Theorem** states that if S is a nice surface in \mathbb{R}^3 and ∂S is its boundary curve traversed counterclockwise as seen from the tip of the normal to S and \vec{F} is a nice vector field on S then

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial S} \vec{F} \cdot d\vec{S}$$

Verify Stokes' Theorem if

$$F = (y, -x, x^2 + y^2)$$

and S is the paraboloid $z = x^2 + y^2$ for $z \le 4$ with **normal pointing up and in**.

Remember to check the orientations.

The paraboloid may be parametrized by:

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$$

a. (10) Compute $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ using the following steps:

$$\vec{\nabla} \times \vec{F} =$$

$$\left(\vec{\nabla} \times \vec{F} \right) \left(\vec{R}(r,\theta) \right) \, = \,$$

$$\vec{R}_r =$$

$$\vec{R}_{\theta} =$$

$$\vec{N} =$$

$$\iint\limits_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$$

b. (10) Recall $F = (y, -x, x^2 + y^2)$ and S is the paraboloid $z = x^2 + y^2$ for $z \le 4$ with **normal pointing up and in**. Compute $\oint_{\partial S} \vec{F} \cdot d\vec{s}$ using the following steps:

$$\vec{r}(\theta) =$$

$$\vec{v}(\theta) =$$

$$\vec{F}(\vec{r}(\theta)) =$$

$$\oint_{\partial S} \vec{F} \cdot d\vec{S} =$$

9. (10 points) The paraboloid at the right is the graph of the equation $z = x^2 + y^2$. It may be parametrized as

$$\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2).$$

Find the area of the paraboloid for $z \le 4$.

HINT: Use results from #8.

10. (10 points) A paraboloid in \mathbf{R}^4 with coordinates (w,x,y,z), may be parametrized by $(w,x,y,z)=\vec{R}(r,\theta)=(r\cos\theta,r\sin\theta,r^2,r^2)$ for $0\leq r\leq 3$ and $0\leq \theta\leq 2\pi$. Compute $I=\int\int (xz\,dw\,dy-wy\,dx\,dz)$ over the surface.