| Name                                              | ID     |            | 1-11  | /55 | 14 | /12  |
|---------------------------------------------------|--------|------------|-------|-----|----|------|
| MATH 253                                          | Exam 1 | Fall 2006  | 12    | /12 | 15 | /12  |
| Sections 201,202                                  |        | P. Yasskin | 13    | /12 | 16 | /12  |
| Multiple Choice: (5 points each. No part credit.) |        |            | Total |     |    | /103 |

- **1**. The vertices of a triangle are P = (3,4,-5), Q = (3,5,-4) and R = (5,2,-5). Find the angle at *P*.
  - **a**. 90°
  - **b**. 120°
  - **c**. 135°
  - **d**. 150°
  - **e**. 180°

2. Find the volume of the parallelepiped with edge vectors:

 $\vec{a} = \langle 4, 1, 2 \rangle$   $\vec{b} = \langle 2, 2, 1 \rangle$   $\vec{c} = \langle 1, 3, 0 \rangle$ 

- **a**. -3
- **b**. 0
- **c**.  $\sqrt{3}$
- **d**. 3
- **e**. 9

- **3**. Consider the set of all points *P* whose distance from (1,0,0) is 3 times its distance from (-1,0,0). This set is a
  - a. sphere.
  - **b**. ellipsoid.
  - c. hyperboloid.
  - d. elliptic paraboloid.
  - e. hyperbolic paraboloid.

**4**. For the curve  $\vec{r}(t) = (\sin^2 t, \cos^2 t, \sin^2 t - \cos^2 t)$  which of the following is FALSE?

**a**. 
$$\vec{v} = \langle 2\sin t\cos t, -2\sin t\cos t, 4\sin t\cos t \rangle$$

**b**. 
$$|\vec{v}| = \sqrt{24} \sin t \cos t$$
  
**c**.  $\hat{T} = \left\langle \frac{2}{\sqrt{24}}, \frac{-2}{\sqrt{24}}, \frac{4}{\sqrt{24}} \right\rangle$ 

**d**. 
$$a_T = 0$$

- **e**.  $a_N = 0$
- 5. For the curve  $\vec{r}(t) = (\sin^2 t, \cos^2 t, \sin^2 t \cos^2 t)$  compute the arc length between  $\vec{r}(0) = (0, 1, -1)$  and  $\vec{r}\left(\frac{\pi}{2}\right) = (1, 0, 1)$ .
  - **a.**  $\frac{1}{4}\sqrt{6}$  **b.**  $\frac{1}{2}\sqrt{6}$  **c.**  $\sqrt{6}$ **d.**  $2\sqrt{6}$
  - **e**. 4

6. The plot at the right represents which vector field?

a. 
$$\vec{A} = \langle x, y \rangle$$
  
b.  $\vec{B} = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$   
c.  $\vec{C} = \langle y, x \rangle$   
d.  $\vec{D} = \left\langle \begin{array}{c} y \\ y \\ x \\ \end{array} \right\rangle$ 

d. 
$$D = \left\langle \frac{1}{\sqrt{x^2 + y^2}}, \frac{1}{\sqrt{x^2 + y^2}} \right\rangle$$
  
e.  $\vec{E} = \langle x + y, x - y \rangle$ 



- 7. Describe the level surfaces of  $f(x, y, z) = x^2 y^2 z^2$ .
  - a. Elliptic Paraboloids
  - b. Elliptic and Hyperbolic Paraboloids
  - c. Hyperboloids of 1-sheet only
  - d. Hyperboloids of 2-sheets only
  - e. Hyperboloids of 1-sheet or 2-sheets
- **8**. Find the plane tangent to the graph of  $z = xe^{xy}$  at the point (2,0). Its *z*-intercept is
  - **a**. 0
  - **b**. 2
  - **c**. −2
  - **d**. 4
  - **e**. -4

- **9**. Find the plane tangent to the surface  $xyz + z^2 = 28$  at the point (4,3,2).
  - Its *z*-intercept is
  - **a**. 0
  - **b**. 5
  - **c**. −5
  - **d**. 80
  - **e**. -80

**10**. Find the line normal to the surface  $xyz + z^2 = 28$  at the point (4,3,2).

It intersects the *xy*-plane at

- **a**. (4,3,2)
- **b**. (4,3,0)
- **c.**  $\left(\frac{13}{4}, 2, 0\right)$ **d.**  $\left(\frac{19}{4}, 4, 4\right)$
- **e**.  $\left(\frac{19}{4}, 4, 0\right)$

- **11**. The salt concentration in a region of sea water is  $\rho = xy^2z^3$ . A swimmer is located at (3,2,1). In what direction should the swimmer swim to increase the salt concentration as fast as possible?
  - **a**. ⟨4,−12,36⟩
  - **b**.  $\langle -4, 12, -36 \rangle$
  - **c**.  $\langle 4, 12, 36 \rangle$
  - **d**.  $\langle -4, -12, -36 \rangle$
  - **e**.  $\langle 4, -12, -36 \rangle$

**Do 4 of the following 5 problems**. Cross out the one you do not want graded, here and on page 1. If you do not specify, #12 will be dropped.

- **12**. Which of the following functions satisfy the Laplace equation  $f_{xx} + f_{yy} = 0$ ? Show your work!
  - **a**.  $f = x^2 + y^2$  **b**.  $f = x^2 y^2$
  - **c.**  $f = x^3 + 3xy^2$  **d.**  $f = x^3 3xy^2$
  - **e.**  $f = e^{-x} \cos y + e^{-y} \cos x$ **f.**  $f = e^{-x} \cos y - e^{-y} \cos x$
- **13**. When two resistors with resistances  $R_1$  and  $R_2$  are connected in parallel, the net resistance R is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 or  $R = \frac{R_1 R_2}{R_1 + R_2}$ .

If  $R_1$  and  $R_2$  are measured as  $R_1 = 2 \pm 0.01$  ohms and  $R_2 = 3 \pm 0.04$  ohms, then R can be calculated as  $R = \frac{6}{5} \pm \Delta R$  ohms.

Use differentials to estimate the uncertainty  $\Delta R$  in the computed value of R.

14. The average of a function f on a curve  $\vec{r}(t)$  is  $f_{ave} = \frac{\int f ds}{\int ds}$ . Find the average of  $f(x, y) = x^2$  on the circle  $x^2 + y^2 = 9$ . HINTS: Parametrize the circle.  $\sin^2 A = \frac{1 - \cos(2A)}{2}$   $\cos^2 A = \frac{1 + \cos(2A)}{2}$ 

**15**. A particle moves along the curve  $\vec{r}(t) = (t^3, t^2, t)$  from (1, 1, 1) to (8, 4, 2) under the action of the force  $\vec{F} = \langle z, y, x \rangle$ . Find the work done.

**16**. The pressure in an ideal gas is given by  $P = k\rho T$  where k is a constant,

 $\rho$  is the density and *T* is the temperature. At a certain instant, the measuring instruments are located at  $r_o = (1,2,3)$  and moving with velocity  $\vec{v} = \langle 4,5,6 \rangle$  and acceleration  $\vec{a} = \langle 7,8,9 \rangle$ . At that instant, the density and temperature are measured to be  $\rho = 12$  and T = 300 and their gradients are  $\vec{\nabla}\rho = \langle 0.6, 0.4, 0.2 \rangle$  and  $\vec{\nabla}T = \langle 2, 1,4 \rangle$ .

Find  $\frac{dP}{dt}$ , the time rate of change of the pressure as seen by the instruments.

Your answer may depend on *k*.

HINTS: The pressure, *P* is a function of density,  $\rho$ , and temperature, *T*, which are functions of the position coordinates, (x, y, z), which are functions of time, *t*. Use the chain rule.