Name_____ ID____

MATH 253

Exam 2

Fall 2006

Sections 201-202

P. Yasskin

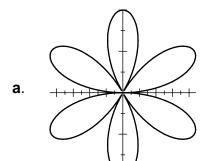
Multiple Choice: (5 points each. No part credit.)

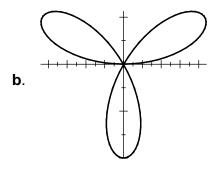
1-9	/45	12	/12
10	/12	13	/12
11	/12	14	/12
Total			/105

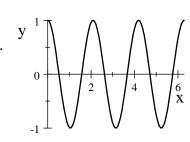
- 1. Compute $\int_0^2 \int_0^z \int_0^{xz} 15x \, dy \, dx \, dz.$
 - **a**. 4
 - **b**. 8
 - **c**. 16
 - **d**. 32
 - **e**. 64

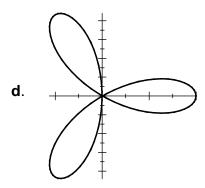
- **2**. Compute $\int_0^2 \int_{y^2}^4 y \sin(x^2) dx dy$ by interchanging the order of integration.
 - **a**. $\frac{-\cos 16}{2}$
 - **b**. $\frac{\cos 16 1}{2}$
 - **c**. $\frac{1-\cos 16}{4}$
 - **d**. $\frac{\cos 16}{8}$
 - **e**. $\frac{\cos 16 1}{4}$

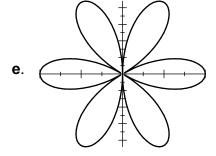
3. Which of the following is the polar plot of $r = \cos(3\theta)$?



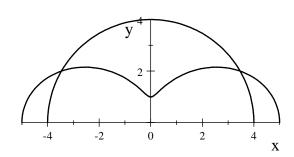








4. Find the area of the region inside the circle r=4 outside the polar curve $r=3+2\cos(2\theta)$ with $y\geq 0$. The area is given by the integral:



a.
$$A = \int_{\pi/3}^{5\pi/3} \int_{3+2\cos(2\theta)}^{4} r dr d\theta$$

b.
$$A = \int_{\pi/3}^{5\pi/3} \int_{4}^{3+2\cos(2\theta)} dr d\theta$$

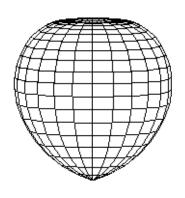
c.
$$A = \int_{\pi/3}^{5\pi/3} \int_{3+2\cos(2\theta)}^{4} dr d\theta$$

d.
$$A = \int_{\pi/6}^{5\pi/6} \int_{3+2\cos(2\theta)}^{4} dr d\theta$$

e.
$$A = \int_{\pi/6}^{5\pi/6} \int_{3+2\cos(2\theta)}^{4} r dr d\theta$$

5. Find the volume of the apple given in spherical coordinates by $\rho = 3\varphi$.

The volume is given by the integral:



- **a.** $54\pi \int_0^{2\pi} \varphi^2 \sin \varphi \, d\varphi$
- **b**. $54\pi \int_0^\pi \varphi^2 \sin \varphi \, d\varphi$
- **c**. $27\pi \int_0^{2\pi} \varphi^2 \sin \varphi \, d\varphi$
- **d**. $27\pi \int_0^\pi \varphi^2 \sin \varphi \, d\varphi$
- $e. 18\pi \int_0^\pi \varphi^3 \sin \varphi \, d\varphi$
- **6.** Find a scalar potential f for the vector field $\vec{F} = (y z, x + z, y x + 2z)$.

Then evaluate f(1,1,1) - f(0,0,0):

- **a**. 1
- **b**. 2
- **c**. 4
- **d**. 5
- **e**. 7
- 7. Which vector field cannot be written as $\vec{\nabla} \times \vec{F}$ for any vector field \vec{F} .

$$\mathbf{a}. \ \vec{A} = (xz, yz, z^2)$$

- **b**. $\vec{B} = (x, y, -2z)$
- **c**. $\vec{C} = (xz, yz, -z^2)$
- **d**. $\vec{D} = (z\sin x, -yz\cos x, y\sin x)$
- **e**. $\vec{E} = (x \sin y, \cos y, x \cos y)$

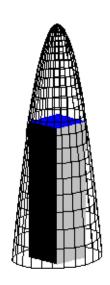
- **8**. Find the total mass of a plate occupying the region between $x = y^2$ and x = 4 if the mass density is $\rho = x$.
 - **a**. $\frac{64}{5}$
 - **b**. $\frac{128}{5}$
 - **c**. $\frac{256}{5}$
 - **d**. $\frac{32}{3}$
 - **e**. $\frac{32}{9}$

- **9**. Find the center of mass of a plate occupying the region between $x = y^2$ and x = 4 if the mass density is $\rho = x$.
 - **a**. $\left(\frac{20}{7}, 0\right)$
 - **b**. $\left(\frac{12}{5}, 0\right)$
 - **c**. $\left(\frac{512}{7}, 0\right)$
 - **d**. $\left(\frac{128}{5}, 0\right)$
 - **e**. $\left(\frac{14}{5}, 0\right)$

Work Out: (12 points each. Part credit possible. Show all work.)

10. Find the dimensions and volume of the largest box which sits on the xy-plane and whose upper vertices are on the elliptic paraboloid $z = 12 - 2x^2 - 3y^2$.

You do not need to show it is a maximum. You MUST eliminate the constraint. Do not use Lagrange multipliers.



11. A pot of water is sitting on a stove. The pot is a cylinder of radius 3 inches and height 4 inches. If the origin is located at the center of the bottom, then the temperature of the water is $T = 102 + x^2 + y^2 - z.$ Find the average temperature of the water: $T_{\text{ave}} = \frac{\iiint T dV}{\iiint dV}.$

12. Compute $\iint_D x dx dy$ over the "diamond"

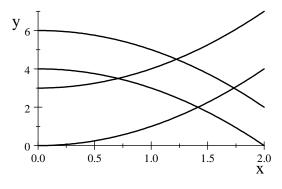
shaped region bounded by the curves

$$y = x^2$$
 $y = 3 + x^2$ $y = 4 - x^2$ $y = 6 - x^2$

Use the curvilinear coordinates

$$u = y + x^2$$
 and $v = y - x^2$.

(Half credit for using rectangular coordinates.)



13. The sides of a cylinder C of radius 3 and height 4 may be parametrized by $R(h,\theta)=(3\cos\theta,3\sin\theta,h)$ for $0\leq\theta\leq2\pi$ and $0\leq h\leq4$.

Compute $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ for $\vec{F} = (-yz^2, xz^2, z^3)$ and outward normal.

HINT: Find \vec{e}_h , \vec{e}_θ , $\vec{N} = \vec{e}_h \times \vec{e}_\theta$, $\vec{\nabla} \times \vec{F}$ and $(\vec{\nabla} \times \vec{F})(\vec{R}(h,\theta))$.

14. The hemispherical surface $x^2 + y^2 + z^2 = 9$ has surface density $\rho = x^2 + y^2$. The surface may be parametrized by $\vec{R}(\varphi,\theta) = (3\sin\varphi\cos\theta, 3\sin\varphi\sin\theta, 3\cos\varphi)$. Find the mass and center of mass of the surface.

HINT: Find \vec{e}_{φ} , \vec{e}_{θ} , $\vec{N} = \vec{e}_{\varphi} \times \vec{e}_{\theta}$, $|\vec{N}|$ and $\rho(\vec{R}(\varphi,\theta))$.