| Name_ID_ |  |  |
| :--- | ---: | ---: |
| MATH 253 | Exam 2 | Fall 2006 |
| Sections 201-202 |  | P. Yasskin |

Multiple Choice: (5 points each. No part credit.)

| $1-9$ | $/ 45$ | 12 | $/ 12$ |
| :---: | ---: | ---: | ---: |
| 10 | $/ 12$ | 13 | $/ 12$ |
| 11 | $/ 12$ | 14 | $/ 12$ |
| Total | $/ 105$ |  |  |

1. Compute $\int_{0}^{2} \int_{0}^{z} \int_{0}^{x z} 15 x d y d x d z$.
a. 4
b. 8
c. 16
d. 32
e. 64
2. Compute $\int_{0}^{2} \int_{y^{2}}^{4} y \sin \left(x^{2}\right) d x d y$ by interchanging the order of integration.
a. $\frac{-\cos 16}{2}$
b. $\frac{\cos 16-1}{2}$
c. $\frac{1-\cos 16}{4}$
d. $\frac{\cos 16}{8}$
e. $\frac{\cos 16-1}{4}$
3. Which of the following is the polar plot of $r=\cos (3 \theta)$ ?
a.

b.

c.

d.

e.


a. $A=\int_{\pi / 3}^{5 \pi / 3} \int_{3+2 \cos (2 \theta)}^{4} r d r d \theta$
b. $A=\int_{\pi / 3}^{5 \pi / 3} \int_{4}^{3+2 \cos (2 \theta)} d r d \theta$
c. $A=\int_{\pi / 3}^{5 \pi / 3} \int_{3+2 \cos (2 \theta)}^{4} d r d \theta$
d. $A=\int_{\pi / 6}^{5 \pi / 6} \int_{3+2 \cos (2 \theta)}^{4} d r d \theta$
e. $A=\int_{\pi / 6}^{5 \pi / 6} \int_{3+2 \cos (2 \theta)}^{4} r d r d \theta$
4. Find the volume of the apple given in spherical coordinates by $\rho=3 \varphi$.

The volume is given by the integral:

a. $54 \pi \int_{0}^{2 \pi} \varphi^{2} \sin \varphi d \varphi$
b. $54 \pi \int_{0}^{\pi} \varphi^{2} \sin \varphi d \varphi$
c. $27 \pi \int_{0}^{2 \pi} \varphi^{2} \sin \varphi d \varphi$
d. $27 \pi \int_{0}^{\pi} \varphi^{2} \sin \varphi d \varphi$
e. $18 \pi \int_{0}^{\pi} \varphi^{3} \sin \varphi d \varphi$
6. Find a scalar potential $f$ for the vector field $\vec{F}=(y-z, x+z, y-x+2 z)$. Then evaluate $f(1,1,1)-f(0,0,0)$ :
a. 1
b. 2
c. 4
d. 5
e. 7
7. Which vector field cannot be written as $\vec{\nabla} \times \vec{F}$ for any vector field $\vec{F}$.
a. $\vec{A}=\left(x z, y z, z^{2}\right)$
b. $\vec{B}=(x, y,-2 z)$
c. $\vec{C}=\left(x z, y z,-z^{2}\right)$
d. $\vec{D}=(z \sin x,-y z \cos x, y \sin x)$
e. $\vec{E}=(x \sin y, \cos y, x \cos y)$
8. Find the total mass of a plate occupying the region between $x=y^{2}$ and $x=4$ if the mass density is $\rho=x$.
a. $\frac{64}{5}$
b. $\frac{128}{5}$
c. $\frac{256}{5}$
d. $\frac{32}{3}$
e. $\frac{32}{9}$
9. Find the center of mass of a plate occupying the region between $x=y^{2}$ and $x=4$ if the mass density is $\rho=x$.
a. $\left(\frac{20}{7}, 0\right)$
b. $\left(\frac{12}{5}, 0\right)$
c. $\left(\frac{512}{7}, 0\right)$
d. $\left(\frac{128}{5}, 0\right)$
e. $\left(\frac{14}{5}, 0\right)$
10. Find the dimensions and volume of the largest box which sits on the $x y$-plane and whose upper vertices are on the elliptic paraboloid $z=12-2 x^{2}-3 y^{2}$.

You do not need to show it is a maximum.
You MUST eliminate the constraint.
Do not use Lagrange multipliers.

11. A pot of water is sitting on a stove. The pot is a cylinder of radius 3 inches and height 4 inches. If the origin is located at the center of the bottom, then the temperature of the water is $T=102+x^{2}+y^{2}-z$. Find the average temperature of the water: $\quad T_{\mathrm{ave}}=\frac{\iiint T d V}{\iiint d V}$.
12. Compute $\iint_{D} x d x d y$ over the "diamond" shaped region bounded by the curves

$$
y=x^{2} \quad y=3+x^{2} \quad y=4-x^{2} \quad y=6-x^{2}
$$

Use the curvilinear coordinates

$$
u=y+x^{2} \text { and } v=y-x^{2} .
$$

(Half credit for using rectangular coordinates.)

13. The sides of a cylinder $C$ of radius 3 and height 4 may be parametrized by $R(h, \theta)=(3 \cos \theta, 3 \sin \theta, h)$ for $0 \leq \theta \leq 2 \pi$ and $0 \leq h \leq 4$.
Compute $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$ for $\vec{F}=\left(-y z^{2}, x z^{2}, z^{3}\right)$ and outward normal.
HINT: Find $\vec{e}_{h}, \vec{e}_{\theta}, \vec{N}=\vec{e}_{h} \times \vec{e}_{\theta}, \vec{\nabla} \times \vec{F}$ and $(\vec{\nabla} \times \vec{F})(\vec{R}(h, \theta))$.
14. The hemispherical surface $x^{2}+y^{2}+z^{2}=9$ has surface density $\rho=x^{2}+y^{2}$. The surface may be parametrized by $\vec{R}(\varphi, \theta)=(3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 3 \cos \varphi)$. Find the mass and center of mass of the surface.

HINT: Find $\vec{e}_{\varphi}, \vec{e}_{\theta}, \vec{N}=\vec{e}_{\varphi} \times \vec{e}_{\theta}, \quad|\vec{N}|$ and $\rho(\vec{R}(\varphi, \theta))$.

