Name	ID		1-10	/50
MATH 253	Final Exam	Fall 2006	11	/15
Sections 201,202		P. Yasskin	12	/15
Multiple Choice: (5 points each. No part credit.)			13	/15
			14	/15
			Total	/110
1 . For the curve $\vec{r}(t) =$	$(t\cos t, t\sin t)$, which of	the following is false?		

- **a**. The velocity is $\vec{v} = (\cos t t \sin t, \sin t + t \cos t)$
 - **b**. The speed is $|\vec{v}| = \sqrt{1+t^2}$
 - **c**. The acceleration is $\vec{a} = (-2\sin t t\cos t, 2\cos t t\sin t)$

d. The arclength between
$$t = 0$$
 and $t = 1$ is $L = \int_0^1 t \sqrt{1 + t^2} dt$

e. The tangential acceleration is $a_T = \frac{t}{\sqrt{1+t^2}}$

- **2**. Find the line perpendicular to the surface $x^2z^2 + y^4 = 5$ at the point (2, 1, 1).
 - **a**. (x, y, z) = (1 + t, 1 + t, 2 + 2t)
 - **b**. (x, y, z) = (1 + 2t, 1 + t, 2 + t)
 - **c**. (x, y, z) = (2 + t, 1 + t, 1 + 2t)
 - **d**. (x, y, z) = (1 + 2t, 1 + t, 2 + 2t)
 - **e**. (x, y, z) = (2 + 2t, 1 + t, 1 + 1t)

3. Let $L = \lim_{(x,y)\to(0,0)} \frac{e^{(x^2+y^2)}-1}{x^2+y^2}$

- **a**. *L* exists and L = 1 by looking at the paths y = mx.
- **b**. *L* does not exist by looking at the paths y = x and y = -x.
- c. L does not exist by looking at polar coordinates.
- **d**. *L* exists and L = 0 by looking at polar coordinates.
- e. L exists and L = 1 by looking at polar coordinates.

- **4**. The point (1,-3) is a critical point of the function $f = xy^2 3x^3 + 6y$. It is a
 - a. local minimum.
 - b. local maximum.
 - c. saddle point.
 - d. inflection point.
 - e. The Second Derivative Test fails.
- 5. Compute the line integral $\int \vec{F} \cdot d\vec{s}$ for the vector field $\vec{F} = (y, x + 2y)$ along the curve $\vec{r}(t) = (e^{\sin(t^2)}, e^{\cos(t^2)})$ for $0 \le t \le \sqrt{\pi}$. (HINT: Find a scalar potential.)
 - **a.** $e^{2} + e \frac{1}{e} \frac{1}{e^{2}}$ **b.** $\frac{1}{e^{2}} + \frac{1}{e} - e - e^{2}$ **c.** $e^{2} - e + \frac{1}{e} - \frac{1}{e^{2}}$ **d.** $\frac{1}{e^{2}} - \frac{1}{e} + e - e^{2}$ **e.** 0

- 6. Compute the line integral $\int y dx x dy$ along the curve $y = x^2$ from (-3,9) to (0,0). HINT: The curve may be parametrized as $r(t) = (t, t^2)$.
 - **a**. –9
 - **b**. −3
 - **c**. 1
 - **d**. 3
 - **e**. 9

- 7. Consider the quarter cylinder surface $x^2 + y^2 = 4$ with $x \ge 0$, $y \ge 0$ and $0 \le z \le 8$. Find the total mass of the quarter cylinder surface if the density is $\rho = x$. The surface may be parametrized by $\vec{R}(\theta, h) = (2\cos\theta, 2\sin\theta, h)$.
 - **a**. 32
 - **b**. 32π
 - **c**. 8
 - **d**. 8π
 - **e**. 64π

- 8. Consider the quarter cylinder surface $x^2 + y^2 = 4$ with $x \ge 0$, $y \ge 0$ and $0 \le z \le 8$. Find the *y*-component of the center of mass of the quarter cylinder if the density is $\rho = x$.
 - **a**. $\frac{4}{\pi}$
 - **b**. $\frac{\pi}{4}$
 - **c**. 32
 - **d**. 2
 - **e**. 1

- 9. Compute the line integral $\oint x^2 y \, dx xy^2 \, dy$ counterclockwise around the circle $x^2 + y^2 = 16$. (HINT: Use a theorem.)
 - a. -128π
 - -64π b.
 - 0 С.
 - d. 64π
 - е. 128π

10. Consider the parabolic surface *P* given by $z = x^2 + y^2$ for $z \le 4$ with normal pointing up and in, the disk *D* given by $x^2 + y^2 \le 4$ and z = 4 with normal pointing up, and the volume V between them. Given that for a certain vector field \vec{F} we have $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = 13 \quad \text{and} \quad \iint_D \vec{F} \cdot d\vec{S} = 4$ compute $\iint_{P} \vec{F} \cdot d\vec{S}$. а. -17**b**. -9

- **c**. 5
- d. 9
- 17 е.

Work Out: (15 points each. Part credit possible.)

11. Find the point in the first octant on the graph of $xy^2z^4 = 32$ which is closest to the origin. You do not need to show it is a maximum. You MUST use the Method of Lagrange Multipliers. Half credit for the Method of Elminating the Constraint. **12**. The hemisphere *H* given by

 $x^{2} + y^{2} + (z - 2)^{2} = 9$ for $z \ge 2$

has center (0,0,2) and radius 3. Verify Stokes' Theorem

$$\iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial H} \vec{F} \cdot d\vec{s}$$

for this hemisphere *H* with normal pointing up and out and the vector field $\vec{F} = (yz, -xz, z)$.

Be sure to check and explain the orientations. Use the following steps:

a. The hemisphere may be parametrized by

 $\vec{R}(\theta, \varphi) = (3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 2 + 3 \cos \varphi)$ Compute the surface integral by successively finding: $\vec{e}_{\theta}, \quad \vec{e}_{\varphi}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F} \Big(\vec{R}(\theta, \varphi) \Big), \quad \iint_{H} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$

Problem Continued

b. Parametrize the boundary circle ∂H and compute the line integral by successively finding:

 $\vec{r}(\theta), \ \vec{v}(\theta), \ \vec{F}(\vec{r}(\theta)), \ \oint_{\partial H} \vec{F} \cdot d\vec{s}.$ Recall: $\vec{F} = (yz, -xz, z)$

13. Compute $\iint \frac{1}{x^2} dx dy$ over the diamond shaped region bounded by the curves $y = \sqrt{x}$, $y = 3\sqrt{x}$, y = x and y = 3x. HINT: Let $u = \frac{y^2}{x}$ and $v = \frac{y}{x}$.

 The surface of a football may be approximated in cylindrical coordinates by

$$r = \sin z$$
 for $0 \le z \le \pi$

Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$

for the volume inside the football and the vector field

$$\vec{F} = (2x, 2y, x^2 + y^2)$$

Use the following steps:

a. Compute the volume integral by computing $\vec{\nabla} \cdot \vec{F}$ in rectangular coordinates and then $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV$ in cylindrical coordinates.

b. The surface of the football may be parametrized by $\vec{R}(\theta, h) = (\sin h \cos \theta, \sin h \sin \theta, h)$. Compute the surface integral by successively finding $\vec{e}_{\theta}, \vec{e}_{h}, \vec{N}, \vec{F}(\vec{R}(\theta, h)), \vec{F} \cdot \vec{N}, \text{ and } \iint \vec{F} \cdot d\vec{S}.$

