Name \qquad ID \qquad
MATH 253
Final Exam
Fall 2006
Sections 201,202
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-10$	$/ 50$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
Total	$/ 110$

1. For the curve $\vec{r}(t)=(t \cos t, t \sin t)$, which of the following is false?
a. The velocity is $\vec{v}=(\cos t-t \sin t, \sin t+t \cos t)$
b. The speed is $|\vec{v}|=\sqrt{1+t^{2}}$
c. The acceleration is $\vec{a}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t)$
d. The arclength between $t=0$ and $t=1$ is $L=\int_{0}^{1} t \sqrt{1+t^{2}} d t$
e. The tangential acceleration is $a_{T}=\frac{t}{\sqrt{1+t^{2}}}$
2. Find the line perpendicular to the surface $x^{2} z^{2}+y^{4}=5$ at the point $(2,1,1)$.
a. $(x, y, z)=(1+t, 1+t, 2+2 t)$
b. $(x, y, z)=(1+2 t, 1+t, 2+t)$
c. $(x, y, z)=(2+t, 1+t, 1+2 t)$
d. $(x, y, z)=(1+2 t, 1+t, 2+2 t)$
e. $(x, y, z)=(2+2 t, 1+t, 1+1 t)$
3. Let $L=\lim _{(x, y) \rightarrow(0,0)} \frac{e^{\left(x^{2}+y^{2}\right)}-1}{x^{2}+y^{2}}$
a. $\quad L$ exists and $L=1$ by looking at the paths $y=m x$.
b. L does not exist by looking at the paths $y=x$ and $y=-x$.
c. L does not exist by looking at polar coordinates.
d. L exists and $L=0$ by looking at polar coordinates.
e. L exists and $L=1$ by looking at polar coordinates.
4. The point $(1,-3)$ is a critical point of the function $f=x y^{2}-3 x^{3}+6 y$. It is a
a. local minimum.
b. local maximum.
c. saddle point.
d. inflection point.
e. The Second Derivative Test fails.
5. Compute the line integral $\int \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=(y, x+2 y)$ along the curve $\vec{r}(t)=\left(e^{\sin \left(t^{2}\right)}, e^{\cos \left(t^{2}\right)}\right)$ for $0 \leq t \leq \sqrt{\pi} . \quad$ (HINT: Find a scalar potential.)
a. $\quad e^{2}+e-\frac{1}{e}-\frac{1}{e^{2}}$
b. $\frac{1}{e^{2}}+\frac{1}{e}-e-e^{2}$
c. $e^{2}-e+\frac{1}{e}-\frac{1}{e^{2}}$
d. $\frac{1}{e^{2}}-\frac{1}{e}+e-e^{2}$
e. 0
6. Compute the line integral $\int y d x-x d y$ along the curve $y=x^{2}$ from $(-3,9)$ to $(0,0)$. HINT: The curve may be parametrized as $r(t)=\left(t, t^{2}\right)$.
a. -9
b. -3
c. 1
d. 3
e. 9
7. Consider the quarter cylinder surface $x^{2}+y^{2}=4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$. Find the total mass of the quarter cylinder surface if the density is $\rho=x$.
The surface may be parametrized by $\vec{R}(\theta, h)=(2 \cos \theta, 2 \sin \theta, h)$.
a. 32
b. 32π
c. 8
d. 8π
e. 64π
8. Consider the quarter cylinder surface $x^{2}+y^{2}=4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$. Find the y-component of the center of mass of the quarter cylinder if the density is $\rho=x$.
a. $\frac{4}{\pi}$
b. $\frac{\pi}{4}$
c. 32
d. 2
e. 1
9. Compute the line integral $\oint x^{2} y d x-x y^{2} d y \quad$ counterclockwise around the circle $x^{2}+y^{2}=16$. (HINT: Use a theorem.)
a. -128π
b. -64π
c. 0
d. 64π
e. 128π
10. Consider the parabolic surface P given by $z=x^{2}+y^{2}$ for $z \leq 4$ with normal pointing up and in, the disk D given by $x^{2}+y^{2} \leq 4$ and $z=4$ with normal pointing up, and the volume V between them. Given that for a certain vector field \vec{F} we have

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=13 \quad \text { and } \quad \iint_{D} \vec{F} \cdot d \vec{S}=4
$$

compute $\iint_{P} \vec{F} \cdot d \vec{S}$.
a. -17
b. -9
c. 5
d. 9
e. $\quad 17$

Work Out: (15 points each. Part credit possible.)
11. Find the point in the first octant on the graph of $x y^{2} z^{4}=32$ which is closest to the origin. You do not need to show it is a maximum. You MUST use the Method of Lagrange Multipliers. Half credit for the Method of Elminating the Constraint.
12. The hemisphere H given by

$$
x^{2}+y^{2}+(z-2)^{2}=9 \text { for } z \geq 2
$$

has center $(0,0,2)$ and radius 3 . Verify Stokes' Theorem

$$
\iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial H} \vec{F} \cdot d \vec{s}
$$

Be sure to check and explain the orientations. Use the following steps:
a. The hemisphere may be parametrized by

$$
\vec{R}(\theta, \varphi)=(3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 2+3 \cos \varphi)
$$

Compute the surface integral by successively finding:
$\vec{e}_{\theta}, \quad \vec{e}_{\varphi}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(\theta, \varphi)), \quad \iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$
b. Parametrize the boundary circle ∂H and compute the line integral by successively finding:
$\vec{r}(\theta), \quad \vec{v}(\theta), \quad \vec{F}(\vec{r}(\theta)), \quad \oint_{\partial H} \vec{F} \cdot d \vec{s} . \quad$ Recall: $\quad \vec{F}=(y z,-x z, z)$
13. Compute $\iint \frac{1}{x^{2}} d x d y$ over the diamond shaped region bounded by the curves $y=\sqrt{x}, y=3 \sqrt{x}, y=x$ and $y=3 x$.
HINT: Let $u=\frac{y^{2}}{x}$ and $v=\frac{y}{x}$.

14. The surface of a football may be approximated in cylindrical coordinates by

$$
r=\sin z \quad \text { for } \quad 0 \leq z \leq \pi
$$

Verify Gauss' Theorem $\quad \iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}$
for the volume inside the football and the vector field

$$
\vec{F}=\left(2 x, 2 y, x^{2}+y^{2}\right)
$$

Use the following steps:
a. Compute the volume integral by computing $\vec{\nabla} \cdot \vec{F}$ in rectangular coordinates and then $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V$ in cylindrical coordinates.
b. The surface of the football may be parametrized by $\vec{R}(\theta, h)=(\sin h \cos \theta, \sin h \sin \theta, h)$.

Compute the surface integral by successively finding $\vec{e}_{\theta}, \quad \vec{e}_{h}, \quad \vec{N}, \quad \vec{F}(\vec{R}(\theta, h)), \vec{F} \cdot \vec{N}$, and $\iint \vec{F} \cdot \overrightarrow{d S}$.

