Name \qquad ID \qquad

MATH 253
Sections 201,202
Final Exam
Fall 2006
Solutions
P. Yasskin

$1-10$	$/ 50$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
Total	$/ 110$

1. For the curve $\vec{r}(t)=(t \cos t, t \sin t)$, which of the following is false?
a. The velocity is $\vec{v}=(\cos t-t \sin t, \sin t+t \cos t)$
b. The speed is $|\vec{v}|=\sqrt{1+t^{2}}$
c. The acceleration is $\vec{a}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t)$
d. The arclength between $t=0$ and $t=1$ is $L=\int_{0}^{1} t \sqrt{1+t^{2}} d t \quad$ Correct Choice
e. The tangential acceleration is $a_{T}=\frac{t}{\sqrt{1+t^{2}}}$
$\vec{v}=(\cos t-t \sin t, \sin t+t \cos t)$
$|\vec{v}|=\sqrt{(\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}}=\sqrt{\cos ^{2} t+t^{2} \cos ^{2} t+\sin ^{2} t+t^{2} \sin ^{2} t}=\sqrt{1+t^{2}}$
$\vec{a}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t)$
$L=\int_{0}^{1}|\vec{v}| d t=\int_{0}^{1} \sqrt{1+t^{2}} d t$
$a_{T}=\frac{d|\vec{v}|}{d t}=\frac{2 t}{2 \sqrt{1+t^{2}}} \quad$ or
$a_{T}=\vec{a} \cdot \hat{T}=(-2 \sin t-t \cos t, 2 \cos t-t \sin t) \cdot \frac{1}{\sqrt{1+t^{2}}}(\cos t-t \sin t, \sin t+t \cos t)$
$=\frac{1}{\sqrt{1+t^{2}}}[(-2 \sin t-t \cos t)(\cos t-t \sin t)+(2 \cos t-t \sin t)(\sin t+t \cos t)]=\frac{t}{\sqrt{1+t^{2}}}$
2. Find the line perpendicular to the surface $x^{2} z^{2}+y^{4}=5$ at the point $(2,1,1)$.
a. $(x, y, z)=(1+t, 1+t, 2+2 t)$
b. $(x, y, z)=(1+2 t, 1+t, 2+t)$
c. $(x, y, z)=(2+t, 1+t, 1+2 t) \quad$ Correct Choice
d. $(x, y, z)=(1+2 t, 1+t, 2+2 t)$
e. $(x, y, z)=(2+2 t, 1+t, 1+1 t)$
$f=x^{2} z^{2}+y^{4} \quad P=(2,1,1) \quad \vec{\nabla} f=\left.\left(2 x z^{2}, 4 y^{3}, 2 x^{2} z\right) \quad \vec{\nabla} f\right|_{P}=(4,4,8) \quad \vec{v}=(1,1,2)$
$X=P+t \vec{v} \quad(x, y, z)=(2,1,1)+t(1,1,2)=(2+t, 1+t, 1+2 t)$
3. Let $L=\lim _{(x, y) \rightarrow(0,0)} \frac{e^{\left(x^{2}+y^{2}\right)}-1}{x^{2}+y^{2}}$
a. $\quad L$ exists and $L=1$ by looking at the paths $y=m x$.
b. L does not exist by looking at the paths $y=x$ and $y=-x$.
c. L does not exist by looking at polar coordinates.
d. L exists and $L=0$ by looking at polar coordinates.
e. L exists and $L=1$ by looking at polar coordinates. Correct Choice

Along $y=m x$, we have $L=\lim _{x \rightarrow 0} \frac{e^{\left(1+m^{2}\right) x^{2}}-1}{\left(1+m^{2}\right) x^{2}} \stackrel{\mathrm{PH}}{=} \lim _{x \rightarrow 0} \frac{e^{\left(1+m^{2}\right) x^{2}}\left(1+m^{2}\right) 2 x}{\left(1+m^{2}\right) 2 x}=1$,
for all m including 1 and -1 which proves nothing.
In polar coordinates, $L=\lim _{r \rightarrow 0} \frac{e^{r^{2}}-1}{r^{2}} \stackrel{\mathrm{PH}}{=} \lim _{r \rightarrow 0} \frac{e^{r^{2}} 2 r}{2 r}=1$, which proves the limit exists and $=1$.
4. The point $(1,-3)$ is a critical point of the function $f=x y^{2}-3 x^{3}+6 y$. It is a
a. local minimum.
b. local maximum.
c. saddle point. Correct Choice
d. inflection point.
e. The Second Derivative Test fails.
$f_{x}=y^{2}-9 x^{2} \quad f_{y}=2 x y+6 \quad f_{x x}=-18 x \quad f_{y y}=2 x \quad f_{x y}=2 y$
$f_{x x}(1,-3)=-18 \quad f_{y y}(1,-3)=2 \quad f_{x y}(1,-3)=-6 \quad D=f_{x x} f_{y y}-f_{x y}^{2}=-36-36=-72$
saddle point
5. Compute the line integral $\int \vec{F} \cdot d \vec{s}$ for the vector field $\vec{F}=(y, x+2 y)$ along the curve $\vec{r}(t)=\left(e^{\sin \left(t^{2}\right)}, e^{\cos \left(t^{2}\right)}\right)$ for $0 \leq t \leq \sqrt{\pi}$. (HINT: Find a scalar potential.)
a. $\quad e^{2}+e-\frac{1}{e}-\frac{1}{e^{2}}$
b. $\frac{1}{e^{2}}+\frac{1}{e}-e-e^{2} \quad$ Correct Choice
c. $e^{2}-e+\frac{1}{e}-\frac{1}{e^{2}}$
d. $\frac{1}{e^{2}}-\frac{1}{e}+e-e^{2}$
e. 0
$\vec{F}=\vec{\nabla} f \quad$ for $f=x y+y^{2} \quad A=\vec{r}(0)=\left(e^{\sin 0}, e^{\cos 0}\right)=(1, e) \quad B=\vec{r}(\sqrt{\pi})=\left(e^{\sin \pi}, e^{\cos \pi}\right)=\left(1, e^{-1}\right)$
By the F.T.C.C.
$\int_{A}^{B} \vec{F} \cdot d \vec{s}=\int_{A}^{B} \vec{\nabla} f \cdot d \vec{s}=f(B)-f(A)=f\left(1, e^{-1}\right)-f(1, e)=\left(e^{-1}+e^{-2}\right)-\left(e+e^{2}\right)=\frac{1}{e^{2}}+\frac{1}{e}-e-e^{2}$
6. Compute the line integral $\int y d x-x d y$ along the curve $y=x^{2}$ from $(-3,9)$ to $(0,0)$. HINT: The curve may be parametrized as $r(t)=\left(t, t^{2}\right)$.
a. $\quad-9 \quad$ Correct Choice
b. -3
c. 1
d. 3
e. 9
$r(t)=\left(t, t^{2}\right) \quad \vec{v}=(1,2 t) \quad$ Orientation OK.
$\vec{F}=(y,-x)=\left(t^{2},-t\right) \quad \vec{F} \cdot \vec{v}=t^{2}-2 t^{2}=-t^{2}$
$\int y d x-x d y=\int \vec{F} \cdot d \vec{s}=\int \vec{F} \cdot \vec{v} d t=\int_{-3}^{0}-t^{2} d \theta=\left[-\frac{t^{3}}{3}\right]_{-3}^{0}=0-\left(-\frac{-27}{3}\right)=-9$
7. Consider the quarter cylinder surface $x^{2}+y^{2}=4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$.

Find the total mass of the quarter cylinder surface if the density is $\rho=x$.
The surface may be parametrized by $\vec{R}(\theta, h)=(2 \cos \theta, 2 \sin \theta, h)$.
a. 32 Correct Choice
b. 32π
c. 8
d. 8π
e. 64π
$\vec{e}_{\theta}=(-2 \sin \theta, 2 \cos \theta, \quad 0 \quad) \quad \vec{N}=(2 \cos \theta, 2 \sin \theta, 0)$
$\vec{e}_{h}=(\quad 0,0,1) \quad|\vec{N}|=\sqrt{4 \cos ^{2} \theta+4 \sin ^{2} \theta}=2$
$M=\iint \rho d S=\int_{0}^{8} \int_{0}^{\pi / 2} x|\vec{N}| d \theta d h=\int_{0}^{8} \int_{0}^{\pi / 2} 2 \cos \theta 2 d \theta d h=4(8)[\sin \theta]_{0}^{\pi / 2}=32$
8. Consider the quarter cylinder surface $x^{2}+y^{2}=4$ with $x \geq 0, y \geq 0$ and $0 \leq z \leq 8$. Find the y-component of the center of mass of the quarter cylinder if the density is $\rho=x$.
a. $\frac{4}{\pi}$
b. $\frac{\pi}{4}$
c. 32
d. 2
e. 1 Correct Choice
y-mom $=\iint y \rho d S=\int_{0}^{8} \int_{0}^{\pi / 2} y x|\vec{N}| d \theta d h=\int_{0}^{8} \int_{0}^{\pi / 2} 4 \sin \theta \cos \theta 2 d \theta d h=8(8)\left[\frac{\sin ^{2} \theta}{2}\right]_{0}^{\pi / 2}=32$
$\bar{y}=\frac{y-\mathrm{mom}}{M}=\frac{32}{32}=1$
9. Compute the line integral $\oint x^{2} y d x-x y^{2} d y \quad$ counterclockwise around the circle $x^{2}+y^{2}=16$. (HINT: Use a theorem.)
a. -128π Correct Choice
b. -64π
c. 0
d. 64π
e. 128π

Use Green's Theorem:
$\oint_{\partial R} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y \quad$ with $P=x^{2} y$ and $Q=-x y^{2}$.
$\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=-y^{2}-x^{2}=-r^{2} \quad d x d y=r d r d \theta$
$\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=-\int_{0}^{2 \pi} \int_{0}^{4} r^{2} r d r d \theta=-2 \pi\left[\frac{r^{4}}{4}\right]_{r=0}^{4}=-128 \pi$
10. Consider the parabolic surface P given by $z=x^{2}+y^{2}$ for $z \leq 4$ with normal pointing up and in, the disk D given by $x^{2}+y^{2} \leq 4$ and $z=4$ with normal pointing up, and the volume V between them.
Given that for a certain vector field \vec{F} we have

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=13 \quad \text { and } \quad \iint_{D} \vec{F} \cdot d \vec{S}=4
$$

compute $\iint_{P} \vec{F} \cdot d \vec{S}$.
a. -17
b. -9 Correct Choice
c. 5
d. 9
e. 17

By Gauss' Theorem: $\quad \iint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{D} \vec{F} \cdot d \vec{S}-\iint_{P} \vec{F} \cdot d \vec{S}$
The minus sign reverses the orientation of P to point outward. Thus
$\iint_{P} \vec{F} \cdot \vec{d} \vec{S}=\iint_{D} \vec{F} \cdot d \vec{S}-\iiint_{V} \vec{\nabla} \cdot F d V=4-13=-9$

Work Out: (15 points each. Part credit possible.)

11. Find the point in the first octant on the graph of $x y^{2} z^{4}=32$ which is closest to the origin.

You do not need to show it is a maximum. You MUST use the Method of Lagrange Multipliers.
Half credit for the Method of Elminating the Constraint.
Minimize $f=x^{2}+y^{2}+z^{2}$ subject to $g=x y^{2} z^{4}=32$.
Method 1: Lagrange Multipliers:
$\vec{\nabla} f=(2 x, 2 y, 2 z) \quad \vec{\nabla} g=\left(y^{2} z^{4}, 2 x y z^{4}, 4 x y^{2} z^{3}\right)$
$\vec{\nabla} f=\lambda \vec{\nabla} g \quad \Rightarrow \quad 2 x=\lambda y^{2} z^{4}, \quad 2 y=\lambda 2 x y z^{4}, \quad 2 z=\lambda 4 x y^{2} z^{3}$
x, y and z cannot be 0 to satisfy the constraint.
$\lambda=\frac{2 x}{y^{2} z^{4}}=\frac{1}{x z^{4}}=\frac{1}{2 x y^{2} z^{2}} \quad \Rightarrow \quad 2 x^{2}=y^{2}, \quad 4 x^{2}=z^{2} \quad \Rightarrow \quad y=\sqrt{2} x, \quad z=2 x$
$32=x y^{2} z^{4}=x(\sqrt{2} x)^{2}(2 x)^{4}=32 x^{7} \quad \Rightarrow \quad x=1 \quad y=\sqrt{2} \quad z=2$
Method 2: Eliminate the Constraint:
$x=\frac{32}{y^{2} z^{4}} \quad f=\frac{2^{10}}{y^{4} z^{8}}+y^{2}+z^{2}$
$f_{y}=-\frac{2^{12}}{y^{5} z^{8}}+2 y=0 \quad f_{z}=-\frac{2^{13}}{y^{4} z^{9}}+2 z=0 \quad \Rightarrow \quad y^{6} z^{8}=2^{11} \quad y^{4} z^{10}=2^{12}$
$\Rightarrow \quad 2=\frac{y^{4} z^{10}}{y^{6} z^{8}}=\frac{z^{2}}{y^{2}} \quad \Rightarrow \quad z=\sqrt{2} y \quad \Rightarrow \quad y^{6}(\sqrt{2} y)^{8}=2^{11} \quad \Rightarrow \quad y^{14}=2^{7}$
$\Rightarrow \quad y=\sqrt{2} \quad z=2 \quad x=\frac{32}{y^{2} z^{4}}=\frac{2^{5}}{2 \cdot 2^{4}}=1$
12. The hemisphere H given by

$$
x^{2}+y^{2}+(z-2)^{2}=9 \text { for } z \geq 2
$$

has center $(0,0,2)$ and radius 3 . Verify Stokes' Theorem

$$
\iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial H} \vec{F} \cdot d \vec{s}
$$

Be sure to check and explain the orientations. Use the following steps:
a. The hemisphere may be parametrized by

$$
\vec{R}(\theta, \varphi)=(3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta, 2+3 \cos \varphi)
$$

Compute the surface integral by successively finding:

$$
\begin{aligned}
& \vec{e}_{\theta}, \quad \vec{e}_{\varphi}, \quad \vec{N}, \quad \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(\theta, \varphi)), \quad \iint_{H} \vec{\nabla} \times \vec{F} \cdot d \vec{S} \\
& \vec{e}_{\theta}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\vec{e}_{\varphi} & \left.=\left\lvert\, \begin{array}{ccc}
-3 \sin \varphi \sin \theta, & 3 \sin \varphi \cos \theta, & 0
\end{array}\right.\right) \\
(3 \cos \varphi \cos \theta, & 3 \cos \varphi \sin \theta, & -3 \sin \varphi)
\end{array}\right| \\
& \vec{N}=\vec{e}_{\theta} \times \vec{e}_{\varphi}=\hat{\imath}\left(-9 \sin ^{2} \varphi \cos \theta\right)-\hat{\jmath}\left(9 \sin ^{2} \varphi \sin \theta\right)+\hat{k}\left(-9 \sin \varphi \cos \varphi \sin ^{2} \theta-9 \sin \varphi \cos \varphi \cos ^{2} \theta\right) \\
& =\left(-9 \sin ^{2} \varphi \cos \theta,-9 \sin ^{2} \varphi \sin \theta,-9 \sin \varphi \cos \varphi\right)
\end{aligned}
$$

\vec{N} points down and in. Reverse it: $\quad \vec{N}=\left(9 \sin ^{2} \varphi \cos \theta, 9 \sin ^{2} \varphi \sin \theta, 9 \sin \varphi \cos \varphi\right)$

$$
\begin{aligned}
& \vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y z, & -x z, & z
\end{array}\right|=\hat{\imath}(0--x)-\hat{\jmath}(0-y)+\hat{k}(-z-z)=(x, y,-2 z) \\
& \vec{\nabla} \times \vec{F}(\vec{R}(r, \theta))=(3 \sin \varphi \cos \theta, 3 \sin \varphi \sin \theta,-2(2+3 \cos \varphi)) \\
& \vec{\nabla} \times \vec{F} \cdot \vec{N}=27 \sin ^{3} \varphi \cos ^{2} \theta+27 \sin ^{3} \varphi \sin ^{2} \theta-18 \sin \varphi \cos \varphi(2+3 \cos \varphi) \\
& \quad=27 \sin ^{3} \varphi-36 \sin \varphi \cos \varphi-54 \sin \varphi \cos ^{2} \varphi
\end{aligned} \begin{aligned}
\iint_{H} \vec{\nabla} & \times \vec{F} \cdot d \vec{S}=\iint_{H} \vec{\nabla} \times \vec{F} \cdot \vec{N} d \theta d \varphi=\int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left(27 \sin ^{3} \varphi-36 \sin \varphi \cos \varphi-54 \sin \varphi \cos ^{2} \varphi\right) d \theta d \varphi \\
& =2 \pi \int_{0}^{\pi / 2}\left(27\left(1-\cos ^{2} \varphi\right) \sin \varphi-36 \sin \varphi \cos \varphi-54 \sin \varphi \cos ^{2} \varphi\right) d \varphi \quad \text { Let } u=\cos \varphi . \\
& =2 \pi\left[-27\left(\cos \varphi-\frac{\cos ^{3} \varphi}{3}\right)+18 \cos ^{2} \varphi+18 \cos ^{3} \varphi\right]_{0}^{\pi / 2}=-2 \pi\left(-27\left(1-\frac{1}{3}\right)+18+18\right) \\
& =-36 \pi
\end{aligned}
$$

b. Parametrize the boundary circle ∂H and compute the line integral by successively finding:
$\vec{r}(\theta), \quad \vec{v}(\theta), \quad \vec{F}(\vec{r}(\theta)), \quad \oint_{\partial H} \vec{F} \cdot d \vec{s} . \quad$ Recall: $\quad \vec{F}=(y z,-x z, z)$
$\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta, 2)$
$\vec{v}(\theta)=(-3 \sin \theta, 3 \cos \theta, 0)$
By the right hand rule the upper curve must be traversed counterclockwise which \vec{v} does.
$\vec{F}(\vec{r}(\theta))=(6 \sin \theta,-6 \cos \theta, 2)$
$\oint_{\partial C} \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F} \cdot \vec{v} d \theta=\int_{0}^{2 \pi}-18 \sin ^{2} \theta-18 \cos ^{2} \theta d \theta=\int_{0}^{2 \pi}-18 d \theta=-36 \pi$
They agree!
13. Compute $\iint \frac{1}{x^{2}} d x d y$ over the diamond shaped region bounded by the curves $y=\sqrt{x}, y=3 \sqrt{x}, y=x$ and $y=3 x$.
HINT: Let $u=\frac{y^{2}}{x}$ and $v=\frac{y}{x}$.

We solve for x and y so we can compute the Jacobian:
$\frac{u}{v}=\frac{y^{2}}{x} \frac{x}{y}=y \quad x=\frac{y}{v}=\frac{u}{v^{2}} \quad$ So $x=\frac{u}{v^{2}} \quad y=\frac{u}{v}$
$J=\left\|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right\|=\|=\| \begin{array}{cc}\frac{1}{v^{2}} & \frac{-2 u}{v^{3}} \\ \frac{1}{v} & \frac{-u}{v^{2}}\end{array} \|\left|=\left|\frac{-u}{v^{4}}-\frac{-2 u}{v^{4}}\right|=\frac{u}{v^{4}}\right.$
The boundaries are: $y^{2}=x$ or $u=1 . \quad y^{2}=9 x$ or $u=9$.

$$
y=x \text { or } v=1 . \quad y=3 x \text { or } v=3
$$

The integrand is: $\frac{1}{x^{2}}=\frac{v^{4}}{u^{2}} \quad$ So
$\iint \frac{1}{x^{2}} d x d y=\int_{1}^{3} \int_{1}^{9} \frac{v^{4}}{u^{2}} \cdot \frac{u}{v^{4}} d u d v=\int_{1}^{3} d v \int_{1}^{9} \frac{1}{u} d u=[v]_{1}^{3}[\ln |u|]_{1}^{9}=[3-1][\ln 9-\ln 1]=2 \ln 9$
14. The surface of a football may be approximated in cylindrical coordinates by

$$
r=\sin z \quad \text { for } \quad 0 \leq z \leq \pi
$$

Verify Gauss' Theorem $\quad \iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}$
for the volume inside the football and the vector field

$$
\vec{F}=\left(2 x, 2 y, x^{2}+y^{2}\right)
$$

Use the following steps:
a. Compute the volume integral by computing $\vec{\nabla} \cdot \vec{F}$ in rectangular coordinates and then $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V$ in cylindrical coordinates.

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{F}=2+2+0=4 \\
& \iiint_{\mathrm{\nabla}}^{\mathrm{\nabla}} \cdot \vec{F} d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\sin z} 4 r d r d z d \theta=2 \pi \int_{0}^{\pi}\left[2 r^{2}\right]_{r=0}^{\sin z} d z=2 \pi \int_{0}^{\pi} 2 \sin ^{2} z d z \\
& \quad=2 \pi \int_{0}^{\pi} 1-\cos 2 z d z=2 \pi\left[z-\frac{\sin 2 z}{2}\right]_{0}^{\pi}=2 \pi^{2}
\end{aligned}
$$

b. The surface of the football may be parametrized by $\vec{R}(\theta, h)=(\sin h \cos \theta, \sin h \sin \theta, h)$.

Compute the surface integral by successively finding
$\vec{e}_{\theta}, \quad \vec{e}_{h}, \quad \vec{N}, \quad \vec{F}(\vec{R}(\theta, h)), \vec{F} \cdot \vec{N}$, and $\iint \vec{F} \cdot d \vec{S}$.
$\vec{e}_{\theta}=(-\sin h \sin \theta, \sin h \cos \theta, 0)$
$\vec{e}_{h}=(\cos h \cos \theta, \cos h \sin \theta, 1)$
$\vec{N}=\vec{e}_{\theta} \times \vec{e}_{h}=\hat{\imath}(\sin h \cos \theta)-\hat{\jmath}(-\sin h \sin \theta)+\hat{k}\left(-\sin h \cos h \sin ^{2} \theta-\sin h \cos h \cos ^{2} \theta\right)$ $=(\sin h \cos \theta, \sin h \sin \theta,-\sin h \cos h)$
$\vec{F}(\vec{R}(\theta, h))=\left(2 \sin h \cos \theta, 2 \sin h \sin \theta, \sin ^{2} h\right)$
$\vec{F} \cdot \vec{N}=2 \sin ^{2} h \cos ^{2} \theta+2 \sin ^{2} h \sin ^{2} \theta-\sin ^{3} h \cos h=2 \sin ^{2} h-\sin ^{3} h \cos h$
$\iint \vec{F} \cdot d \vec{S}=\int_{0}^{2 \pi} \int_{0}^{\pi} \vec{F} \cdot \vec{N} d h d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi}\left(2 \sin ^{2} h-\sin ^{3} h \cos h\right) d h d \theta$ $=2 \pi \int_{0}^{\pi}\left(1-\cos 2 h-\sin ^{3} h \cos h\right) d h=2 \pi\left[h-\frac{\sin 2 h}{2}-\frac{\sin ^{4} h}{4}\right]_{0}^{\pi}=2 \pi^{2}$

