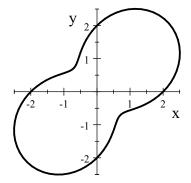
Exam 1 Fall 2016 13 D2 P. Yasskin 14

- **1**. Find the distance from the point $\langle 3, 4, 12 \rangle$ to the sphere $x^2 + y^2 + z^2 = 64$.
 - **a**. 1
 - **b**. 5
 - **c**. 8
 - **d**. 13
 - **e**. 105

2. Find *a* and *b* so that a(1,2) + b(2,1) = (0,3). What is a + b?

- **a**. 1
- **b**. 2
- **c**. 3
- **d**. 4
- **e**. 5
- 3. The plot at the right is which polar curve?
 - **a**. $r = 2 \cos(2\theta)$
 - **b**. $r = 2 + \cos(2\theta)$
 - **c**. $r = 2 \sin(2\theta)$
 - **d**. $r = 2 + \sin(2\theta)$
 - **e**. $r = \theta$



4. In the plot at the right, which point could be a local maximum?

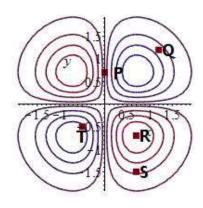
a.
$$P = \left(0, \frac{1}{\sqrt{2}}\right)$$

b.
$$Q = \left(\sqrt{2}, \sqrt{2}\right)$$

c.
$$R = \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$$

d.
$$S = \left(\frac{1}{\sqrt{2}}, -\sqrt{2}\right)$$

e.
$$T = \left(\frac{-1}{2}, \frac{-1}{2}\right)$$



- **5**. Find a vector perpendicular to the plane thru the points P = (2,3,0), Q = (4,-1,-1) and R = (2,0,2).
 - **a**. $\langle 11, -4, -6 \rangle$
 - **b**. $\langle -11, 3, -2 \rangle$
 - c. $\langle -11, -4, -6 \rangle$
 - **d**. $\langle -11, -3, -2 \rangle$
 - $\textbf{e}.~\langle -11,4,-6\rangle$

- **6**. A triangle has vertices at P = (1,0,4), Q = (1,0,2) and $R = (2,\sqrt{3},0)$. Find the angle at Q.
 - **a**. 30°
 - **b**. 45°
 - $\textbf{c}.~~60^{\circ}$
 - **d**. 120°
 - **e**. 135°

- 7. Find the intersection of the line $\frac{x-2}{-2} = \frac{y-1}{3} = \frac{z+2}{1}$ and the plane 2x + y z = 3. At this point x + y + z =
 - **a**. 1
 - **b**. 3
 - **c**. 5
 - **d**. 7
 - **e**. 9

- 8. Find the plane tangent to the graph of the function $z = f(x,y) = x^2 \sin(y) + x \cos(y)$ at the point $(x,y) = (2,\pi)$. Its *z*-intercept is
 - **a**. 4π
 - **b**. 2π
 - **c**. 2
 - **d**. -4π
 - **e**. -2π

- **9**. A plane is flying from WEST to EAST, directly over the equator at a constant altitude of 100 kilometers above sea level. (Since the Earth is a sphere, the path of the plane is part of a great circle.) In what direction do \hat{N} and \hat{B} point?
 - **a**. \hat{N} points SOUTH and \hat{B} points DOWN
 - **b.** \hat{N} points SOUTH and \hat{B} points UP
 - c. \hat{N} points DOWN and \hat{B} points NORTH
 - d. \hat{N} points DOWN and \hat{B} points SOUTH
 - e. \hat{N} points UP and \hat{B} points NORTH

- **10**. Find the mass of a wire in the shape of the semi-circle $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta)$ for $0 \le \theta \le \pi$ if the linear density is given by $\delta = y$.
 - **a**. π
 - **b**. 3π
 - **c**. 6
 - **d**. 12
 - **e**. 18

- **11**. A bead is pushed along a wire in the shape of the twisted cubic $\vec{r}(t) = (t^2, t^3, t)$ by the force $\vec{F} = \langle x, z, -y \rangle$ from (1,1,1) to (4,8,2). Find the work done.
 - **a**. 15
 - **b**. 16
 - **c**. $\frac{45}{2}$
 - **d**. 45
 - **e**. 48

12. Compute
$$\lim_{h \to 0} \frac{\sin^3(2x + 2h + 3y) - \sin^3(2x + 3y)}{h}$$

a. $6\sin^2(2x + 3y)\cos(2x + 3y)$
b. $6\cos^2(2x + 3y)$
c. $9\sin^2(2x + 3y)\cos(2x + 3y)$
d. $9\cos^2(2x + 3y)$

- **u**. \mathcal{I} $\mathcal{$
- **e**. $6\sin^2(2x+3y)$

- **13**. (20 points) As Duke Skywater flies the Century Eagle through the galaxy he wants to maximize the Power of the Force which is given by $F = \frac{3}{D}$ where *D* is the dark matter density given by $D = x^2 + y^2 + z^2$. His current position is $\vec{r} = (1, 2, 2)$.
 - **a**. If his current velocity is $\vec{v} = (0.3, 0.5, 0.7)$, what is the current rate of change of the Power of the Force, $\frac{dF}{dt}$? (Plug in numbers but you don't need to simplify.)

b. If he wants to change his velocity to increase the Power of the Force as fast as possible, in what **unit** vector direction should he travel?

14. (20 points) For each limit, prove it exists or does not exist. If it exists, find the limit.

a.
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{(x+y^3)^2}$$

b.
$$\lim_{(x,y)\to(0,0)} \frac{x^4 + y^4}{x^2 + y^2}$$