\qquad
MATH 253
Exam 1
Fall 2016
Sections 201/202
Solutions
P. Yasskin

Multiple Choice: (5 points each. No part credit.)

$1-12$	$/ 60$
13	$/ 20$
14	$/ 20$
Total	$/ 100$

1. Find the distance from the point $\langle 3,4,12\rangle$ to the sphere $x^{2}+y^{2}+z^{2}=64$.
a. 1
b. 5 Correct
c. 8
d. 13
e. 105

Solution: The distance from $\langle 3,4,12\rangle$ to the origin is $\sqrt{3^{2}+4^{2}+12^{2}}=13$. The radius of the sphere is $R=8$. So the point is 5 units outside the sphere.
2. Find a and b so that $a(1,2)+b(2,1)=(0,3)$. What is $a+b$?
a. 1 Correct
b. 2
c. 3
d. 4
e. 5

Solution: $a+2 b=0 \quad 2 a+b=3$
The $1^{\text {st }}$ equation says $a=-2 b$. So the $2^{\text {nd }}$ equation says $-4 b+b=3$ or $b=-1$ and $a=2$. So $a+b=1$.
3. The plot at the right is which polar curve?
a. $\quad r=2-\cos (2 \theta)$
b. $r=2+\cos (2 \theta)$
c. $r=2-\sin (2 \theta)$
d. $r=2+\sin (2 \theta)$ Correct
e. $r=\theta$

Solution: From the plot, when $\theta=0$, we have $r=2$, which is only true for equations (c) and (d). When $\theta=\frac{\pi}{4}$, we have $r=3$, which is only true for equation (d).
4. In the plot at the right, which point could be a local maximum?
a. $\quad P=\left(0, \frac{1}{\sqrt{2}}\right)$
b. $Q=(\sqrt{2}, \sqrt{2})$
c. $R=\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ Correct
d. $S=\left(\frac{1}{\sqrt{2}},-\sqrt{2}\right)$

e. $\quad T=\left(\frac{-1}{2}, \frac{-1}{2}\right)$

Solution: Near a local maximum, the contours form circles around the local maximum. So R is the local maximum.
5. Find a vector perpendicular to the plane thru the points $P=(2,3,0), \quad Q=(4,-1,-1)$ and $R=(2,0,2)$.
a. $\langle 11,-4,-6\rangle$
b. $\langle-11,3,-2\rangle$
c. $\langle-11,-4,-6\rangle$ Correct
d. $\langle-11,-3,-2\rangle$
e. $\langle-11,4,-6\rangle$

Solution: $\overrightarrow{P Q}=Q-P=\langle 2,-4,-1\rangle \quad \overrightarrow{P R}=R-P=\langle 0,-3,2\rangle$ and $\vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -4 & -1 \\ 0 & -3 & 2\end{array}\right|=\hat{\imath}(-8-3)-\hat{\jmath}(4-0)+\hat{k}(-6)=\langle-11,-4,-6\rangle$
6. A triangle has vertices at $P=(1,0,4), Q=(1,0,2)$ and $R=(2, \sqrt{3}, 0)$. Find the angle at Q.
a. 30°
b. 45°
c. 60°
d. 120°
e. 135° Correct

Solution: $\overrightarrow{Q P}=(0,0,2) \quad \overrightarrow{Q R}=(1, \sqrt{3},-2) \quad|\overrightarrow{Q P}|=\sqrt{4}=2 \quad|\overrightarrow{Q R}|=\sqrt{1+3+4}=\sqrt{8}=2 \sqrt{2}$ $\overrightarrow{Q P} \cdot \overrightarrow{Q R}=-4 \quad \cos \theta=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q R}|}=\frac{-4}{2 \cdot 2 \sqrt{2}}=\frac{-1}{\sqrt{2}} \quad \theta=135^{\circ}$
7. Find the intersection of the line $\frac{x-2}{-2}=\frac{y-1}{3}=\frac{z+2}{1}$ and the plane $2 x+y-z=3$. At this point $x+y+z=$
a. 1
b. 3
c. 5 Correct
d. 7
e. 9

Solution: The parametric equation of the line is $(x, y, z)=(2-2 t, 1+3 t,-2+t)$.
Plug the line into the plane: $2(2-2 t)+(1+3 t)-(-2+t)=3$ or $7-2 t=3$ or $-2 t=-4$. So $t=2, \quad(x, y, z)=(-2,7,0)$ and $x+y+z=5$.
8. Find the plane tangent to the graph of the function $z=f(x, y)=x^{2} \sin (y)+x \cos (y)$ at the point $(x, y)=(2, \pi)$. Its z-intercept is
a. 4π Correct
b. 2π
c. 2
d. -4π
e. -2π

Solution: $f(2, \pi)=4 \sin (\pi)+2 \cos (\pi)=-2$

$$
\begin{aligned}
& f_{x}(x, y)=2 x \sin (y)+\cos (y) \quad f_{x}(2, \pi)=4 \sin (\pi)+\cos (\pi)=-1 \\
& f_{y}(x, y)=x^{2} \cos (y)-x \sin (y) \quad f_{y}(2, \pi)=4 \cos (\pi)-2 \sin (\pi)=-4 \\
& z=f(2, \pi)+f_{x}(2, \pi)(x-2)+f_{y}(2, \pi)(y-\pi)=-2-1(x-2)-4(y-\pi)=-x-4 y+4 \pi
\end{aligned}
$$

9. A plane is flying from WEST to EAST, directly over the equator at a constant altitude of 100 kilometers above sea level. (Since the Earth is a sphere, the path of the plane is part of a great circle.) In what direction do \hat{N} and \hat{B} point?
a. \hat{N} points SOUTH and \hat{B} points DOWN
b. \hat{N} points SOUTH and \hat{B} points UP
c. \hat{N} points DOWN and \hat{B} points NORTH Correct
d. \hat{N} points DOWN and \hat{B} points SOUTH
e. \hat{N} points UP and \hat{B} points NORTH

Solution: \hat{T} points EAST. Since the path is a circle the aceleration points toward the center. So \hat{N} points toward the center of the Earth which is DOWN. $\hat{B}=\hat{T} \times \hat{N}$ which points NORTH.
10. Find the mass of a wire in the shape of the semi-circle $\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta)$ for $0 \leq \theta \leq \pi$ if the linear density is given by $\delta=y$.
a. π
b. 3π
c. 6
d. 12
e. 18 Correct

Solution: The tangent vector is $\vec{v}=(-3 \sin \theta, 3 \cos \theta)$ and its length is $|\vec{v}|=\sqrt{9 \sin ^{2} \theta+9 \cos ^{2} \theta}=3$. The density along the curve is $\delta(\vec{r}(t))=3 \sin \theta$. So the mass is:
$M=\int_{0}^{\pi} \delta d s=\int_{0}^{\pi} \delta(\vec{r}(t))|\vec{v}| d \theta=\int_{0}^{\pi} 3 \sin \theta 3 d \theta=[-9 \cos \theta]_{0}^{\pi}=9--9=18$.
11. A bead is pushed along a wire in the shape of the twisted cubic $\vec{r}(t)=\left(t^{2}, t^{3}, t\right)$ by the force $\vec{F}=\langle x, z,-y\rangle$ from $(1,1,1)$ to $(4,8,2)$. Find the work done.
a. 15 Correct
b. 16
c. $\frac{45}{2}$
d. 45
e. 48

Solution: $\vec{v}=\left\langle 2 t, 3 t^{2}, 1\right\rangle \quad \vec{F}(\vec{r}(t))=\left\langle t^{2}, t,-t^{3}\right\rangle \quad \vec{F} \cdot \vec{v}=2 t^{3}+3 t^{3}-t^{3}=4 t^{3}$
$W=\int \vec{F} \cdot d \vec{s}=\int_{1}^{2} \vec{F} \cdot \vec{v} d t=\int_{1}^{2} 4 t^{3} d t=\left[t^{4}\right]_{1}^{2}=16-1=15$
12. Compute $\lim _{h \rightarrow 0} \frac{\sin ^{3}(2 x+2 h+3 y)-\sin ^{3}(2 x+3 y)}{h}$
a. $6 \sin ^{2}(2 x+3 y) \cos (2 x+3 y)$ Correct
b. $6 \cos ^{2}(2 x+3 y)$
c. $9 \sin ^{2}(2 x+3 y) \cos (2 x+3 y)$
d. $9 \cos ^{2}(2 x+3 y)$
e. $6 \sin ^{2}(2 x+3 y)$

Solution: This is the definition of the x partial derivative of $\sin ^{3}(2 x+3 y)$. So we compute $\frac{\partial}{\partial x} \sin ^{3}(2 x+3 y)=3 \sin ^{2}(2 x+3 y) \cos (2 x+3 y) 2$
13. (20 points) As Duke Skywater flies the Century Eagle through the galaxy he wants to maximize the Power of the Force which is given by $F=\frac{3}{D}$ where D is the dark matter density given by $D=x^{2}+y^{2}+z^{2}$. His current position is $\vec{r}=(1,2,2)$.
a. If his current velocity is $\vec{v}=(0.3,0.5,0.7)$, what is the current rate of change of the Power of the Force, $\frac{d F}{d t}$? (Plug in numbers but you don't need to simplify.)

Solution: The position says $x=1, \quad y=2, \quad z=2$.
The velocity says $\frac{d x}{d t}=0.3, \quad \frac{d y}{d t}=0.5, \quad \frac{d z}{d t}=0.7$.
Currently $D=x^{2}+y^{2}+z^{2}=1^{2}+2^{2}+2^{2}=9$.
We use the chain rule twice:

$$
\begin{aligned}
\frac{d F}{d t} & =\frac{d F}{d D} \frac{d D}{d t}=\frac{d F}{d D}\left(\frac{\partial D}{\partial x} \frac{d x}{d t}+\frac{\partial D}{\partial y} \frac{d y}{d t}+\frac{\partial D}{\partial z} \frac{d z}{d t}\right)=\frac{-3}{D^{2}}\left(2 x \frac{d x}{d t}+2 y \frac{d y}{d t}+2 z \frac{d z}{d t}\right) \\
& =\frac{-3}{81}(2 \cdot 1 \cdot(0.3)+2 \cdot 2 \cdot(0.5)+2 \cdot 2 \cdot(0.7))=\frac{-5.4}{27} \approx-0.2
\end{aligned}
$$

b. If he wants to change his velocity to increase the Power of the Force as fast as possible, in what unit vector direction should he travel?

Solution: The position says $x=1, \quad y=2, \quad z=2$.
Currently $D=x^{2}+y^{2}+z^{2}=1^{2}+2^{2}+2^{2}=9$.
The Force will increase fastest in the direction of its gradient:

$$
\begin{aligned}
& \vec{\nabla} F=\left\langle\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right\rangle=\left\langle\frac{d F}{d D} \frac{\partial D}{\partial x}, \frac{d F}{d D} \frac{\partial D}{\partial y}, \frac{d F}{d D} \frac{\partial D}{\partial z}\right\rangle=\frac{d F}{d D} \vec{\nabla} D=\frac{-3}{D^{2}}\langle 2 x, 2 y, 2 x\rangle=\frac{-3}{81}\langle 2,4,4\rangle \\
& |\vec{\nabla} F|=\frac{3}{81} \sqrt{4+16+16}=\frac{18}{81}=\frac{2}{9}
\end{aligned}
$$

So the unit vector direction is
$\frac{1}{|\vec{\nabla} F|} \vec{\nabla} F=\frac{9}{2} \frac{(-3)}{81}\langle 2,4,4\rangle=\frac{-1}{6}\langle 2,4,4\rangle=\left\langle\frac{-1}{3}, \frac{-2}{3}, \frac{-2}{3}\right\rangle$
14. (20 points) For each limit, prove it exists or does not exist. If it exists, find the limit.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{\left(x+y^{3}\right)^{2}}$

Solution: Try the straight lines: $\quad \lim _{\substack{y=m x \\ x \rightarrow 0}} \frac{x y^{3}}{\left(x+y^{3}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x m^{3} x^{3}}{\left(x+m^{3} x^{3}\right)^{2}}=\lim _{x \rightarrow 0} \frac{m^{3} x^{2}}{\left(1+m^{3} x^{2}\right)^{2}}=0$
So if the limit exists, it must be 0 .
Try the cubic $x=y^{3}: \quad \lim _{\substack{x=y^{3} \\ y \rightarrow 0}} \frac{x y^{3}}{\left(x+y^{3}\right)^{2}}=\lim _{y \rightarrow 0} \frac{y^{6}}{\left(2 y^{3}\right)^{2}}=\frac{1}{4}$
Since $\frac{1}{4} \neq 0$, the limit does not exist.
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{x^{2}+y^{2}}$

Solution: Try the straight lines: $\quad \lim _{\substack{y=m x \\ x \rightarrow 0}} \frac{x^{4}+y^{4}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{4}+m^{4} x^{4}}{x^{2}+m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(1+m^{4}\right)}{1+m^{2}}=0$
So if the limit exists, it must be 0 .
Switch to polar coordinates:
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{x^{2}+y^{2}}=\lim _{\substack{\theta=\theta(r) \\ r \rightarrow 0}} \frac{r^{4} \cos ^{4} \theta+r^{4} \sin ^{4} \theta}{r^{2}}=\lim _{r \rightarrow 0} r^{2}\left(\cos ^{4} \theta+\sin ^{4} \theta\right)$
Since $-2 \leq \cos ^{4} \theta+\sin ^{4} \theta \leq 2$, we have $-r^{2} \leq r^{2}\left(\cos ^{4} \theta+\sin ^{4} \theta\right) \leq r^{2}$.
By the squeeze theorem, since $\lim _{r \rightarrow 0}-r^{2}=\lim _{r \rightarrow 0} r^{2}=0$, the quantity in the middle also has limit 0.

So $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+y^{4}}{x^{2}+y^{2}}=0$.

