Name_____

MATH 253

Final Exam

Sections 201/202

Fall 2016 P. Yasskin

Multiple Choice: (5 points each.)

Two questions have part credit, but I won't say which.

- **1**. Find the tangential acceleration along the curve $\vec{r}(t) = (3t^2, 4t^3, 3t^4)$.
 - **a**. $6 36t^2$
 - **b**. $6 + 36t^2$
 - **c**. $6 24t^2$
 - **d**. $6 + 24t^2$
 - **e**. $12\sqrt{3+4t^2+9t^4}$
- 2. The graphs of $z = x^2 + y^3$ and $z = 129x^2 y^3$ intersect in the curve $\vec{r}(t) = (x(t), y(t), z(t))$. If $x(t) = t^3$, then z(t) =
 - **a**. 63*t*⁶
 - **b**. 64*t*⁶
 - **c**. 65*t*⁶
 - **d**. $127t^6$
 - **e**. 128*t*⁶
- 3. Antwoman is currently running across a frying pan. She is currently at the point (3,2) and has speed 20 cm/sec in the direction $\left(\frac{3}{5}, \frac{4}{5}\right)$. She measures the temperature to be 325° K and its gradient to be $(-5,2)^{\circ}$ K/cm. At what rate (in °K/sec) does she see the temperature changing?
 - **a**. -28
 - **b**. -14
 - **c**. -1.4
 - **d**. 1.4
 - **e**. 28

1-11	/55
12	/10
13	/30
14	/12
Total	/107

- **4**. Find 3 positive numbers *x*, *y* and *z*, whose sum is 90 such that $f(x,y,z) = xy^2z^3$ is a maximum. What is *xyz*?
 - **a**. $2^3 \cdot 3 \cdot 5^3 \cdot 7$
 - **b**. $2^2 \cdot 3^2 \cdot 5^4$
 - **c**. $2 \cdot 3^4 \cdot 5^3$
 - **d**. $2^2 \cdot 5^3 \cdot 7^2$
 - **e**. $2 \cdot 3 \cdot 5^4 \cdot 7$

- 5. Find the area inside the **inner** loop of the limacon $r = \sqrt{3} 2\cos\theta$.
 - a. $\frac{5}{3}\pi + \frac{1}{2}\sqrt{3}$ b. $\frac{5}{3}\pi + \frac{1}{2}\sqrt{3} - 6$ c. $6 - \frac{1}{2}\sqrt{3} - \frac{5}{3}\pi$ d. $\frac{5}{6}\pi - \frac{3}{2}\sqrt{3}$ e. $\frac{3}{2}\sqrt{3} - \frac{5}{6}\pi$

- Find the mass of the plate between y = 2x and $y = x^2$ if the surface density is $\delta = xy$. 6.
 - **a**. $\frac{8}{15}$
 - **b**. $\frac{16}{15}$

 - c. $\frac{32}{15}$ d. $\frac{8}{3}$ e. $\frac{16}{3}$
- 7. Find the *y*-component of the center of mass of the plate between y = 2x and $y = x^2$ if the surface density is $\delta = xy$.
 - **a**. $\frac{8}{15}$ **b.** $\frac{5}{12}$ **c.** $\frac{12}{5}$ **d.** $\frac{15}{8}$ **e.** $\frac{32}{5}$
- Compute $\int_{(0,0,0)}^{(1,2,0)} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2x + y, x + 2y, 2z)$ along the curve $\vec{r}(t) = (\sqrt{t}, t^2 + t^3, t^2 t^3)$. 8. HINT: Find a scalar potential if possible.
 - 1 а.
 - 3 b.
 - 5 С.
 - 7 d.
 - Cannot be computed because there is no scalar potential. е.

Compute $\int_{(0,0,0)}^{(1,2,0)} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (x,x,x)$ along the curve $\vec{r}(t) = (t,t^2+t^3,t^2-t^3)$. 9.

HINT: Find a scalar potential if possible.

- $\frac{11}{6}$ а. **b**. $-\frac{5}{6}$ **c**. $\frac{5}{6}$
- 3 d.
- Cannot be computed because there is no scalar potential. **e**.

10. Compute the line integral $\oint \vec{F} \cdot d\vec{s}$

for $\vec{F} = (2y - 3xy^2, 3x - 3x^2y)$

counterclockwise around the boundary of the region shown at the right. HINT: Use a Theorem.

- a. 3
- b. 6
- **c**. 12
- d. 24
- **e**. 48

- 11. Compute $\iint_{Q} \vec{\nabla} \times \vec{F} \cdot d\vec{S} \text{ for}$ $\vec{F} = \left(x(z-16)^2 - yz^3, y(z-16)^2 + xz^3, x^4z - y^4z\right)$ over the quartic surface Q given by $z = (x^2 + y^2)^2$ for $z \le 16$ oriented down and out, which may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^4)$. HINT: Use a Theorem. Be sure to check the orientation. a. $-2^{18}\pi$ b. $-2^{16}\pi$ c. $-2^{15}\pi$ d. $2^{15}\pi$
 - **e**. $2^{18}\pi$

Work Out: (Points indicated. Part credit possible. Show all work.)

3. (10 points) Roughly draw the contour 12. plot for the function $f(x,y) = x^2 y.$ 2 Include and label the level sets for f = -2, -1, 0, 1, 2.1 If there is more than one piece to a level set, label each piece. 0 -2 -1 -3 1 2 3 -1 -2

13. (30 points) Verify Gauss' Theorem

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \, dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F} = (xz^2, yz^2, z^3)$ and the solid region, *V*, between the hemispheres $z = \sqrt{16 - x^2 - y^2}$ and $z = \sqrt{1 - x^2 - y^2}$ for $z \ge 0$.

Use the following steps: Be sure to check orientations.

a. (7 pts) LHS:

$$\vec{\nabla} \cdot \vec{F} =$$

 $\vec{\nabla} \cdot \vec{F} \Big|_{\vec{R}}$

Name your coordinate system

$$\iiint_V \vec{\nabla} \cdot \vec{F} \, dV =$$

- b. RHS: The boundary consists of 3 pieces.
 - i. (13 pts) Parametrize the Outer Hemisphere: $\vec{R}(\varphi, \theta) =$

Evaluate the vector field on the surface:

$$\vec{F}\left(\vec{R}\right) = (xz^2, yz^2, z^3) =$$

Find the normal

 $\vec{e}_{\varphi} =$ $\vec{e}_{\theta} =$ $\vec{N} =$ Evaluate:

 $\vec{F} \cdot \vec{N} =$

 $\iint_{\text{outer}} \vec{F} \cdot d\vec{S} =$ (co

and evaluate

ii. (3 pts) Parametrize the Inner Hemisphere: $\vec{R}(\varphi, \theta) =$

Evaluate the vector field on the surface:

$$\vec{F}\left(\vec{R}\right) = \left(xz^2, yz^2, z^3\right) =$$

Find the normal:

 $ec{e}_{arphi} = ec{e}_{ heta} = ec{N} = ec{N} = ec{N}$

Evaluate:

$$\vec{F} \cdot \vec{N} =$$

$$\iint \vec{F} \cdot d\vec{S} =$$
inner

iii. (3 pts) Parametrize the Base Ring: $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 0)$ Evaluate the vector field on the surface:

$$\vec{F}\left(\vec{R}\right) = (xz^2, yz^2, z^3) =$$

Find the normal:

$$\vec{e}_r = \vec{e}_{\theta} = \vec{N} =$$

Evaluate:

$$\iint_{\text{ring}} \vec{F} \cdot d\vec{S} =$$

iv. (2 pts) Total RHS

$$\iint_{\partial V} \vec{F} \cdot d\vec{S} =$$

c. (2 pts) Comparison of LHS and RHS:

14. (12 points) Find all points on the paraboloid $z = x^2 + y^2$ where the normal line passes throught the point P = (0, 0, 36).

HINT: The normal vector at X = (x, y, z) must be parallel to the vector \overrightarrow{XP} .