$\qquad$
MATH 253
Final Exam
Fall 2016
Sections 201/202
P. Yasskin

Multiple Choice: (5 points each.)
Two questions have part credit, but I won't say which.

| $1-11$ | $/ 55$ |
| :---: | ---: |
| 12 | $/ 10$ |
| 13 | $/ 30$ |
| 14 | $/ 12$ |
| Total | $/ 107$ |

1. Find the tangential acceleration along the curve $\vec{r}(t)=\left(3 t^{2}, 4 t^{3}, 3 t^{4}\right)$.
a. $6-36 t^{2}$
b. $6+36 t^{2}$
c. $6-24 t^{2}$
d. $6+24 t^{2}$
e. $12 \sqrt{3+4 t^{2}+9 t^{4}}$
2. The graphs of $z=x^{2}+y^{3}$ and $z=129 x^{2}-y^{3}$ intersect in the curve $\vec{r}(t)=(x(t), y(t), z(t))$. If $x(t)=t^{3}$, then $z(t)=$
a. $63 t^{6}$
b. $64 t^{6}$
c. $65 t^{6}$
d. $127 t^{6}$
e. $128 t^{6}$
3. Antwoman is currently running across a frying pan. She is currently at the point $(3,2)$ and has speed $20 \mathrm{~cm} / \mathrm{sec}$ in the direction $\left(\frac{3}{5}, \frac{4}{5}\right)$. She measures the temperature to be $325^{\circ} \mathrm{K}$ and its gradient to be $(-5,2)^{\circ} \mathrm{K} / \mathrm{cm}$. At what rate (in ${ }^{\circ} \mathrm{K} / \mathrm{sec}$ ) does she see the temperature changing?
a. -28
b. -14
c. -1.4
d. 1.4
e. 28
4. Find 3 positive numbers $x, y$ and $z$, whose sum is 90 such that $f(x, y, z)=x y^{2} z^{3}$ is a maximum. What is $x y z$ ?
a. $2^{3} \cdot 3 \cdot 5^{3} \cdot 7$
b. $2^{2} \cdot 3^{2} \cdot 5^{4}$
c. $2 \cdot 3^{4} \cdot 5^{3}$
d. $2^{2} \cdot 5^{3} \cdot 7^{2}$
e. $2 \cdot 3 \cdot 5^{4} \cdot 7$
5. Find the area inside the inner loop of the limacon $r=\sqrt{3}-2 \cos \theta$.
a. $\frac{5}{3} \pi+\frac{1}{2} \sqrt{3}$
b. $\frac{5}{3} \pi+\frac{1}{2} \sqrt{3}-6$
c. $6-\frac{1}{2} \sqrt{3}-\frac{5}{3} \pi$
d. $\frac{5}{6} \pi-\frac{3}{2} \sqrt{3}$
e. $\frac{3}{2} \sqrt{3}-\frac{5}{6} \pi$

6. Find the mass of the plate between $y=2 x$ and $y=x^{2}$ if the surface density is $\delta=x y$.
a. $\frac{8}{15}$
b. $\frac{16}{15}$
c. $\frac{32}{15}$
d. $\frac{8}{3}$
e. $\frac{16}{3}$
7. Find the $y$-component of the center of mass of the plate between $y=2 x$ and $y=x^{2}$ if the surface density is $\delta=x y$.
a. $\frac{8}{15}$
b. $\frac{5}{12}$
c. $\frac{12}{5}$
d. $\frac{15}{8}$
e. $\frac{32}{5}$
8. Compute $\int_{(0,0,0)}^{(1,2,0)} \vec{F} \cdot d \vec{s}$ for $\vec{F}=(2 x+y, x+2 y, 2 z)$ along the curve $\vec{r}(t)=\left(\sqrt{t}, t^{2}+t^{3}, t^{2}-t^{3}\right)$. HINT: Find a scalar potential if possible.
a. 1
b. 3
c. 5
d. 7
e. Cannot be computed because there is no scalar potential.
9. Compute $\int_{(0,0,0)}^{(1,2,0)} \vec{F} \cdot d \vec{s}$ for $\vec{F}=(x, x, x)$ along the curve $\vec{r}(t)=\left(t, t^{2}+t^{3}, t^{2}-t^{3}\right)$. HINT: Find a scalar potential if possible.
a. $\frac{11}{6}$
b. $-\frac{5}{6}$
c. $\frac{5}{6}$
d. 3
e. Cannot be computed because there is no scalar potential.
10. Compute the line integral $\oint \vec{F} \cdot d \vec{s}$
for $\vec{F}=\left(2 y-3 x y^{2}, 3 x-3 x^{2} y\right)$
counterclockwise around the boundary
of the region shown at the right.
HINT: Use a Theorem.
a. 3
b. 6
c. 12
d. 24
e. 48

11. Compute $\iint_{Q} \vec{\nabla} \times \vec{F} \cdot \vec{S}$ for $\vec{F}=\left(x(z-16)^{2}-y z^{3}, y(z-16)^{2}+x z^{3}, x^{4} z-y^{4} z\right)$
over the quartic surface $Q$ given by $z=\left(x^{2}+y^{2}\right)^{2}$
for $z \leq 16$ oriented down and out, which may be parametrized by $\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{4}\right)$.
HINT: Use a Theorem. Be sure to check the orientation.
a. $-2^{18} \pi$
b. $-2^{16} \pi$
c. $-2^{15} \pi$
d. $2^{15} \pi$
e. $2^{18} \pi$


Work Out: (Points indicated. Part credit possible. Show all work.)
12. (10 points) Roughly draw the contour plot for the function $f(x, y)=x^{2} y$. Include and label the level sets for

$$
f=-2,-1,0,1,2 .
$$

If there is more than one piece to a level set, label each piece.

13. (30 points) Verify Gauss' Theorem

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}
$$

for the vector field $\vec{F}=\left(x z^{2}, y z^{2}, z^{3}\right)$ and the solid region, $V$, between the hemispheres

$$
z=\sqrt{16-x^{2}-y^{2}} \text { and } z=\sqrt{1-x^{2}-y^{2}} \text { for } z \geq 0
$$

Use the following steps: Be sure to check orientations.

a. (7 pts) LHS:
$\vec{\nabla} \cdot \vec{F}=$

Name your coordinate system $\qquad$ and evaluate
$\left.\vec{\nabla} \cdot \vec{F}\right|_{\vec{R}}=$ $d V=$
$\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=$
b. RHS: The boundary consists of 3 pieces.
i. (13 pts) Parametrize the Outer Hemisphere: $\vec{R}(\varphi, \theta)=$

Evaluate the vector field on the surface:
$\vec{F}(\vec{R})=\left(x z^{2}, y z^{2}, z^{3}\right)=$
Find the normal
$\vec{e}_{\varphi}=$
$\vec{e}_{\theta}=$
$\vec{N}=$

Evaluate:
$\vec{F} \cdot \vec{N}=$
$\iint_{\text {outer }} \vec{F} \cdot \overrightarrow{d S}=$
(continued)
ii. (3 pts) Parametrize the Inner Hemisphere: $\vec{R}(\varphi, \theta)=$

Evaluate the vector field on the surface:
$\vec{F}(\vec{R})=\left(x z^{2}, y z^{2}, z^{3}\right)=$
Find the normal:
$\vec{e}_{\varphi}=$
$\vec{e}_{\theta}=$
$\vec{N}=$

Evaluate:
$\vec{F} \cdot \vec{N}=$

$$
\iint_{\text {inner }} \vec{F} \cdot d \vec{S}=
$$

iii. (3 pts) Parametrize the Base Ring: $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, 0)$

Evaluate the vector field on the surface:
$\vec{F}(\vec{R})=\left(x z^{2}, y z^{2}, z^{3}\right)=$

Find the normal:
$\vec{e}_{r}=$
$\vec{e}_{\theta}=$
$\vec{N}=$

Evaluate:

$$
\iint_{\text {ring }} \vec{F} \cdot \vec{S}=
$$

iv. (2 pts) Total RHS

$$
\iint_{\partial V} \vec{F} \cdot d \vec{S}=
$$

c. (2 pts) Comparison of LHS and RHS:
14. (12 points) Find all points on the paraboloid $z=x^{2}+y^{2}$ where the normal line passes throught the point $P=(0,0,36)$.
HINT: The normal vector at $X=(x, y, z)$ must be parallel to the vector $\overrightarrow{X P}$.

