Name \qquad
\qquad Section____

MATH 253 Honors
EXAM 1
Sections 201-203

Multiple Choice: (5 points each)

$1-8$	$/ 40$
9	$/ 24$
10	$/ 10^{+}$
11	$/ 13$
12	$/ 13$

Problems 1-4: Consider the vectors: $\quad \vec{a}=(2,0,-2), \quad \vec{b}=(0,-3,3) \quad$ and $\vec{c}=(1,1,1)$.

1. The angle between \vec{a} and \vec{b} is
a. 30°
b. 45°
c. 90°
d. 120°
e. 150°
2. The vector projection of \vec{a} along \vec{b} is
a. $(0,1,-1)$
b. $(0,-1,1)$
c. $(-2,-3,5)$
d. $(0,3 \sqrt{2},-3 \sqrt{2})$
e. $(0,-3 \sqrt{2}, 3 \sqrt{2})$
3. The area of a triangle with \vec{a} and \vec{b} as two sides is
a. 3
b. 6
c. $3 \sqrt{3}$
d. $6 \sqrt{3}$
e. 54
4. The volume of the parallelepiped with edges \vec{a}, \vec{b} and \vec{c} is
a. -18
b. -6
c. 3
d. 6
e. 18

Problems 5-7: The pressure in an ideal gas is given by $P=k \rho T$ where k is a constant, ρ is the density and T is the temperature. The pressure, density and temperature are all functions of position. At the point $Q=(1,2,3)$, the density is $\rho(Q)=1.5$ and its gradient is $\vec{\nabla} \rho(Q)=(.2, .3,-.1)$. Also at that point, the temperature is $T(Q)=24$ and its gradient is
$\vec{\nabla} T(Q)=(-3,1,2)$. $\vec{\nabla} T(Q)=(-3,1,2)$.
5. At the point Q, the pressure is $P(Q)=36 k$. What is the gradient of the pressure?
a. $\vec{\nabla} P(Q)=k(.7,-.1,1.1)$
b. $\vec{\nabla} P(Q)=k(.3,8.7, .6)$
c. $\vec{\nabla} P(Q)=k(.3,-8.7, .6)$
d. $\vec{\nabla} P(Q)=k(-2.8,1.3,1.9)$
e. $\vec{\nabla} P(Q)=k(-2.8,-1.3,1.9)$
6. If a fly is located at the point Q, in what direction should the fly travel to cool off as soon as possible?
a. $(-.2,-.3, .1)$
b. $(3,-1,-2)$
c. $(-3,1,2)$
d. $(2,-1,3)$
e. $(2,1,3)$
7. If a fly is located at the point Q and travelling with velocity $\vec{v}=(3,4,12)$, how fast is the density changing at the location of the fly?
a. $\frac{d \rho}{d t}(Q)=-7.8$
b. $\frac{d \rho}{d t}(Q)=-.6$
c. $\frac{d \rho}{d t}(Q)=\frac{.6}{13}$
d. $\frac{d \rho}{d t}(Q)=.6$
e. $\frac{d \rho}{d t}(Q)=7.8$
8. The graph at the right is the contour plot of which function?
a. $y^{2}-x^{2}$
b. $x y$
c. $x^{2}+y^{2}$
d. $y-x^{2}$
e. $x-y^{2}$

9. (24 points) Consider the parametric curve $\vec{r}(t)=\left(t^{3}, 3 t^{2}, 6 t\right)$.
a. Compute the velocity and acceleration:
$\vec{v}=$
$\vec{a}=$
b. Find a parametric equation for the line tangent to the curve at $t=1$.
c. Find a non-parametric (symmetric) equation for the line tangent to the curve at $t=1$.
d. Find a parametric equation for the plane instantaneously containing the curve at $t=1$.
e. Find a non-parametric equation for the plane instantaneously containing the curve at $t=1$.
f. Find the arclength of the curve between $t=0$ and $t=2$.
10. (10 points) Does each limit exist? Why or why not? Find the value of the one that exists. (Up to 4 points extra credit for a good explanation.)
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+2 y^{2}}$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{\sqrt{x^{2}+2 y^{2}}}$
11. (13 points) Find the equation of the plane tangent to the graph of the function $f(x, y)=3 x \sin y-2 y \cos x$ at the point $(x, y)=\left(0, \frac{\pi}{2}\right)$.
12. (13 points) Find the equation of the plane tangent to the surface $F(x, y, z)=x^{2} y+y^{3} z+z^{4} x=29$ at the point $P=(x, y, z)=(3,2,1)$.

