			1-8	/40
Name	ID	Section	9	/24
MATH 253 Honors Sections 201-203	EXAM 1	Spring 1999 P. Yasskin	10	/10+
Multiple Choice: (5 points each)		11	/13
	,		12	/13

Problems 1 – 4: Consider the vectors: $\vec{a} = (2, 0, -2), \quad \vec{b} = (0, -3, 3)$ and $\vec{c} = (1, 1, 1).$

- **1**. The angle between \vec{a} and \vec{b} is
 - **a**. 30°
 - **b**. 45°
 - **c**. 90°
 - **d**. 120°
 - **e**. 150°
- **2**. The vector projection of \vec{a} along \vec{b} is
 - **a**. (0,1,-1)
 - **b**. (0, -1, 1)
 - **c**. (-2, -3, 5)
 - **d**. $(0, 3\sqrt{2}, -3\sqrt{2})$
 - e. $(0, -3\sqrt{2}, 3\sqrt{2})$
- **3**. The area of a triangle with \vec{a} and \vec{b} as two sides is
 - **a**. 3
 - **b**. 6
 - **c**. $3\sqrt{3}$
 - **d**. $6\sqrt{3}$
 - **e**. 54
- **4**. The volume of the parallelepiped with edges \vec{a} , \vec{b} and \vec{c} is
 - **a**. -18
 - **b**. -6
 - **c**. 3
 - **d**. 6
 - **e**. 18

Problems 5 – 7: The pressure in an ideal gas is given by $P = k\rho T$ where *k* is a constant, ρ is the density and *T* is the temperature. The pressure, density and temperature are all functions of position. At the point Q = (1,2,3), the density is $\rho(Q) = 1.5$ and its gradient is $\vec{\nabla}\rho(Q) = (.2,.3,-.1)$. Also at that point, the temperature is T(Q) = 24 and its gradient is $\vec{\nabla}T(Q) = (-3,1,2)$.

- **5**. At the point *Q*, the pressure is P(Q) = 36k. What is the gradient of the pressure?
 - **a**. $\vec{\nabla} P(Q) = k(.7, -.1, 1.1)$
 - **b**. $\vec{\nabla} P(Q) = k(.3, 8.7, .6)$
 - **c**. $\vec{\nabla} P(Q) = k(.3, -8.7, .6)$
 - **d**. $\nabla P(Q) = k(-2.8, 1.3, 1.9)$
 - **e**. $\nabla P(Q) = k(-2.8, -1.3, 1.9)$
- 6. If a fly is located at the point *Q*, in what direction should the fly travel to **cool off** as soon as possible?
 - **a**. (-.2, -.3, .1)
 - **b**. (3, -1, -2)
 - **c**. (-3, 1, 2)
 - **d**. (2,−1,3)
 - **e**. (2,1,3)
- 7. If a fly is located at the point Q and travelling with velocity $\vec{v} = (3,4,12)$, how fast is the density changing at the location of the fly?

a.
$$\frac{d\rho}{dt}(Q) = -7.8$$

b.
$$\frac{d\rho}{dt}(Q) = -.6$$

c.
$$\frac{d\rho}{dt}(Q) = \frac{.6}{13}$$

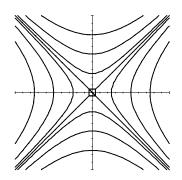
d.
$$\frac{d\rho}{dt}(Q) = .6$$

e.
$$\frac{dp}{dt}(Q) = 7.8$$

8. The graph at the right is the contour plot of which function?

a.
$$y^2 - x^2$$

- **b**. *xy*
- **c.** $x^2 + y^2$
- d. $y x^2$
- **e.** $x y^2$



- **9**. (24 points) Consider the parametric curve $\vec{r}(t) = (t^3, 3t^2, 6t)$.
 - a. Compute the velocity and acceleration:
 - $\vec{v} = \vec{a} =$
 - **b**. Find a parametric equation for the line tangent to the curve at t = 1.

c. Find a non-parametric (symmetric) equation for the line tangent to the curve at t = 1.

d. Find a parametric equation for the plane instantaneously containing the curve at t = 1.

e. Find a non-parametric equation for the plane instantaneously containing the curve at t = 1.

f. Find the arclength of the curve between t = 0 and t = 2.

10. (10 points) Does each limit exist? Why or why not? Find the value of the one that exists. (*Up to 4 points extra credit for a good explanation*.)

a.
$$\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2 + 2y^2}$$

b.
$$\lim_{(x,y)\to(0,0)} \frac{2xy}{\sqrt{x^2+2y^2}}$$

11. (13 points) Find the equation of the plane tangent to the graph of the function $f(x,y) = 3x \sin y - 2y \cos x$ at the point $(x,y) = \left(0, \frac{\pi}{2}\right)$.

12. (13 points) Find the equation of the plane tangent to the surface $F(x, y, z) = x^2y + y^3z + z^4x = 29$ at the point P = (x, y, z) = (3, 2, 1).