Name		Section	1-7	/56
MATH 253 Honors	EXAM 1	Fall 1999	8	/12 ${ }^{+}$
Sections 201-202		P. Yasskin	9	/16
Multiple Choice: (8 points each)			10	/16

1. Find the volume of the parallelepiped with edges $\vec{a}=(2,4,0), \vec{b}=(-1,0,3)$ and $\vec{c}=(0,1,-2)$.
a. -14
b. -12
c. 2
d. 12
e. 14
2. At the point where the line $\frac{x+4}{3}=\frac{y-1}{2}=\frac{z+2}{4}$ intersects the plane $(x, y, z)=(4-2 s+t, 3+2 s, 6-t)$ we have $2 x+y+z=$
a. 15
b. 13
c. 11
d. 9
e. 7
3. Find the equation of the plane which is perpendicular to the line through $P=(1,3,5)$ and $Q=(3,7,1)$ and is equidistant from P and Q.
a. $x+2 y-2 z=12$
b. $x+2 y-2 z=6$
c. $x+2 y-2 z=-6$
d. $x+2 y-2 z=-3$
e. $2 x+4 y-4 z=24$

Problems 4-6: The temperature in an ideal gas is given by $\quad T=\kappa \frac{P}{\rho} \quad$ where κ is a constant, P is the pressure and ρ is the density. The pressure, density and temperature are all functions of position. At a certain point $\quad Q=(1,2,3), \quad$ we have

$$
\begin{array}{ll}
P(Q)=4 & \vec{\nabla} P(Q)=(-3,2,1) \\
\rho(Q)=2 & \vec{\nabla} \rho(Q)=(3,-1,2)
\end{array}
$$

4. Use the linear approximation to estimate the pressure at the point $R=(1.2,1.9,3.1)$.
a. 2.9
b. 3.1
c. 3.3
d. 4.7
e. 7.3
5. At the point Q, the temperature is $\quad T(Q)=2 \kappa \quad$ and its gradient is $\quad \vec{\nabla} T(Q)=$
a. $\kappa(-4.5,0,2.5)$
b. $\kappa(1.5,0,2.5)$
c. $\kappa(1.5,2,-4.5)$
d. $\kappa(-4.5,2,-1.5)$
e. $\kappa(-1.5,2,2.5)$
6. If a fly is located at the point Q and travelling with velocity $\vec{v}=(3,4,12)$, how fast is the density changing at the location of the fly?
a. $\frac{d \rho}{d t}(Q)=37$
b. $\frac{d \rho}{d t}(Q)=29$
c. $\frac{d \rho}{d t}(Q)=21$
d. $\frac{d \rho}{d t}(Q)=2.1$
e. $\frac{d \rho}{d t}(Q)=.21$
7. The graph at the right is the contour plot of which function?
a. $y^{2}-x^{2}$
b. $x y$
C. $x^{2}+y^{2}$
d. $y-x^{2}$
e. $x-y^{2}$

8. (12 points) Does each limit exist? Why or why not? Find the value of the one that exists. (Up to 4 points extra credit for a good explanation.)
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{4}+y^{2}}$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{2}+y^{2}}$
9. (16 points) Consider the parametric curve $\vec{r}(t)=\left(t, 4 e^{t / 2}, 2 e^{t}\right)$.
a. Compute the velocity and acceleration:
$\vec{v}=$
$\vec{a}=$
b. Find a parametric equation for the line tangent to the curve at $t=0$.
c. Find a parametric equation for the plane instantaneously containing the curve at $t=0$. This is the plane containing the velocity and the acceleration.
d. Find a non-parametric equation for the plane instantaneously containing the curve at $t=0$.
e. Find the arclength of the curve between $t=0$ and $t=2$. HINT: Factor inside the square root.
10. (16 points) Find the equation of the plane tangent to the graph of the function $f(x, y)=3 x e^{y}-2 x^{2} e^{2 y}$ at the point $(x, y)=(1, \ln 2)$.
