Name	ID	Section	1-7	/56
MATH 253 Honors	EXAM 1	Fall 1999	8	/12+
Sections 201-202		P. Yasskin	9	/16
Multiple Choice: (8 points each)			10	/16

- **1**. Find the volume of the parallelepiped with edges $\vec{a} = (2,4,0), \vec{b} = (-1,0,3)$ and
 - $\vec{c} = (0, 1, -2).$
 - **a**. -14
 - **b**. -12
 - **c**. 2
 - **d**. 12
 - **e**. 14

2. At the point where the line $\frac{x+4}{3} = \frac{y-1}{2} = \frac{z+2}{4}$ intersects the plane (x, y, z) = (4 - 2s + t, 3 + 2s, 6 - t) we have 2x + y + z =**a.** 15

- **b**. 13
- **c**. 11
- **d**. 9
- **e**. 7
- **3**. Find the equation of the plane which is perpendicular to the line through P = (1,3,5) and Q = (3,7,1) and is equidistant from *P* and *Q*.
 - **a.** x + 2y 2z = 12
 - **b.** x + 2y 2z = 6
 - **c.** x + 2y 2z = -6
 - **d**. x + 2y 2z = -3
 - **e.** 2x + 4y 4z = 24

Problems 4 – **6**: The temperature in an ideal gas is given by $T = \kappa \frac{P}{\rho}$ where κ is a constant, *P* is the pressure and ρ is the density. The pressure, density and temperature are all functions of position. At a certain point Q = (1, 2, 3), we have

$$P(Q) = 4$$
 $\vec{\nabla} P(Q) = (-3, 2, 1)$
 $\rho(Q) = 2$ $\vec{\nabla} \rho(Q) = (3, -1, 2)$

- **4**. Use the linear approximation to estimate the pressure at the point R = (1.2, 1.9, 3.1).
 - **a**. 2.9
 - **b**. 3.1
 - **c**. 3.3
 - **d**. 4.7
 - **e**. 7.3

5. At the point *Q*, the temperature is $T(Q) = 2\kappa$ and its gradient is $\vec{\nabla}T(Q) =$

- **a**. $\kappa(-4.5, 0, 2.5)$
- **b**. $\kappa(1.5, 0, 2.5)$
- **c**. $\kappa(1.5, 2, -4.5)$
- **d**. $\kappa(-4.5, 2, -1.5)$ **e**. $\kappa(-1.5, 2, 2.5)$

6. If a fly is located at the point *Q* and travelling with velocity $\vec{v} = (3, 4, 12)$, how fast is the density changing at the location of the fly?

a.
$$\frac{d\rho}{dt}(Q) = 37$$

b.
$$\frac{d\rho}{dt}(Q) = 29$$

c.
$$\frac{d\rho}{dt}(Q) = 21$$

d.
$$\frac{d\rho}{dt}(Q) = 2.1$$

 $e. \ \frac{d\rho}{dt}(Q) = .21$

- **7**. The graph at the right is the contour plot of which function?
 - **a.** $y^2 x^2$
 - b. xy
 - **c.** $x^2 + y^2$
 - d. $y x^2$
 - **e.** $x y^2$

- 8. (12 points) Does each limit exist? Why or why not? Find the value of the one that exists. (*Up to 4 points extra credit for a good explanation*.)
 - **a.** $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4 + y^2}$

b. $\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^2+y^2}$

- **9**. (16 points) Consider the parametric curve $\vec{r}(t) = (t, 4e^{t/2}, 2e^t)$.
 - **a**. Compute the velocity and acceleration:
 - $\vec{v} = \vec{a} =$
 - **b**. Find a parametric equation for the line tangent to the curve at t = 0.

c. Find a parametric equation for the plane instantaneously containing the curve at t = 0. This is the plane containing the velocity and the acceleration.

d. Find a non-parametric equation for the plane instantaneously containing the curve at t = 0.

e. Find the arclength of the curve between t = 0 and t = 2. HINT: Factor inside the square root. **10.** (16 points) Find the equation of the plane tangent to the graph of the function $f(x,y) = 3xe^y - 2x^2e^{2y}$ at the point $(x,y) = (1, \ln 2)$.