Name	ID	Section	1-4	140
MATH 253 Honors	EXAM 2	Fall 1999	5	/15
Sections 201-202		P. Yasskin	6	/15
			7	$/ 15$
Multiple Choice: (10 points each)				
			8	/15

1. Compute $\int_{0}^{2} \int_{y}^{2}(x+y) d x d y$.
a. 2
b. 4
c. 6
d. 8
e. 10
2. Compute $\iiint_{R} 2 x y d V$ over the solid region R given by $x^{2} \leq y \leq x$ and $0 \leq z \leq x$.
a. $\frac{1}{70}$
b. $\frac{1}{35}$
c. $\frac{2}{35}$
d. $\frac{4}{35}$
e. None of these.
3. Compute $\iint_{R} e^{x^{2}+y^{2}} d A$ over the region R in the $1^{\text {st }}$ quadrant between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
a. $\frac{\pi}{2} e^{5}$
b. $\frac{\pi}{4}\left(e^{3}-e^{2}\right)$
c. $\frac{\pi}{2}\left(e^{3}-e^{2}\right)$
d. $\frac{\pi}{4}\left(e^{9}-e^{4}\right)$
e. $\frac{\pi}{2}\left(e^{9}-e^{4}\right)$
4. Compute $\int_{0}^{2} \int_{y}^{2} e^{-x^{2}} d x d y$.
a. $\frac{1}{2}\left(1-e^{-4}\right)$
b. $\frac{1}{4}\left(1-e^{-4}\right)$
c. $\frac{1}{4}\left(e^{-4}-1\right)$
d. $\frac{1}{4} e^{-4}$
e. $-\frac{1}{2} e^{-4}$
5. A cupcake has its base on the $x y$-plane. Its sides are the cylinder $x^{2}+y^{2}=4$ and its top is the paraboloid $z=6-x^{2}-y^{2}$. Its density is $\rho=3 \frac{\mathrm{gm}}{\mathrm{cm}^{3}}$. Find its total mass and the z-component of its center of mass.
6. Find the mass and the z-component of the center of mass of the hemisphere $0 \leq z \leq \sqrt{25-x^{2}-y^{2}}$ whose density is given by $\delta=\frac{1}{5}\left(x^{2}+y^{2}+z^{2}\right)$.
7. A cardboard box is constructed with a hinge at the back so that the top, bottom and back have one sheet of cardboard while the sides and front have two sheets of cardboard. If the volume is $3 \mathrm{ft}^{3}$, find the dimensions of the box which minimize the amount of cardboard needed.
8. Compute $\iint_{R} x d x d y$ over the region inside the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ between the lines $y=\frac{x}{2}$ and $y=-\frac{x}{2}$ in the $1^{\text {st }}$ and $4^{\text {th }}$ quadrants.

HINT: Use the elliptic coordinate system:

$$
x=4 t \cos \theta \quad y=2 t \sin \theta
$$

