Name	ID	Section	1-4	/32
MATH 253 Honors	EXAM 3	Fall 1999	5	/25
Sections 201-202		P. Yasskin	6	/25
Multiple Choice: (8 points each)			7	/20
1. Compute the line integral	$\int_{A}^{B} \vec{F} \cdot d\vec{s} \text{of the}$	e vector field $\vec{F} = (y, y)$	z, -xz, z)	along
the helix <i>H</i> parametrized by and $B = (-3, 0, 4\pi)$. a. 20π b. 26π c. $26\pi^2$ d. -20π e. $-10\pi^2$	$\vec{r}(t) = (3\cos t, 3\sin t)$	sin <i>t</i> , 4t) between	A = (3,0	0,0)
2. Find the total mass of the helix <i>H</i> parametrized by $\vec{r}(t) = (3 \cos t, 3 \sin t, 4t)$ between $A = (3,0,0)$ and $B = (-3,0,4\pi)$ if the linear mass density is $\rho = z^2$. a. $\frac{16\pi^3}{3}$ b. $\frac{40\pi^3}{3}$ c. $\frac{80\pi^3}{3}$ d. $16\pi^3$ e. $80\pi^3$				
3. Compute $\oint (-xy^2 dx + x^2 y dx)$ the triangle whose vertices a Theorem. a. 4 b. 8 c. 16 d. 32 e. 64		wise around the comp and (0,4). HINT: U		
4. Compute $\int (yz dx + xz dy + xz dy + xz dy + xz dy + yz dx + yz dy + yz dx + yz dy + $		e curve $t = 0$ and $t = \pi$. HIN	T: Find	a scalar

5. (25 points) Stokes' Theorem states that if *S* is a surface in 3-space and ∂S is its boundary curve traversed counterclockwise as seen from the tip of the normal to Sthen

$$\iint\limits_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint\limits_{\partial S} \vec{F} \cdot d\vec{s}$$

Verify Stokes' Theorem if

$$F = (y, -x, x^{2} + y^{2})$$

and *S* is the cone $z = \sqrt{x^{2} + y^{2}}$ for $z \le 2$
with **normal pointing up and in**.
The cone may be parametrized by:
 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$

5a. (16 points) Compute
$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$$
 using the following steps:

 $\vec{\nabla} \times \vec{F} =$

 $\vec{R}_r =$

 $\vec{R}_{\theta} =$

$$\vec{N} =$$

$$\left(\vec{\nabla} \times \vec{F}\right) \left(\vec{R}(r,\theta)\right) =$$
$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$$

5b (9 points) Recall $F = (y, -x, x^2 + y^2)$ and *S* is the cone $z = \sqrt{x^2 + y^2}$ with **normal pointing up and in**. Compute $\oint_{\partial S} \vec{F} \cdot d\vec{s}$ using the following steps:

(Remember to check the orientation of the curve.)

 $\vec{r}(\theta) =$

 $\vec{v}(\theta) =$

$\vec{F}(\vec{r}(\theta)) =$

 $\oint_{\partial S} \vec{F} \cdot d\vec{s} =$

6. (25 points) Gauss' Theorem states that if V is a solid region and ∂V is its boundary surface with **outward normal** then

$$\iiint\limits_V \vec{\nabla} \bullet \vec{F} \ dV = \iint\limits_{\partial V} \vec{F} \bullet d\vec{S}$$

Verify Gauss' Theorem if

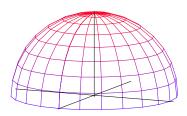
 $F = (xz, yz, x^2 + y^2)$

and V is the solid hemisphere

$$0 \le z \le \sqrt{4 - x^2 - y^2} \,.$$

Notice that ∂V consists of two parts: the hemisphere *H*: $z = \sqrt{4 - x^2 - y^2}$ and a disk *D*: $x^2 + y^2 \le 4$ with z = 0

6a. (5 pts) Compute $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV.$



HINT: Compute the divergence in rectangular and the integral in spherical. $\vec{\nabla} \cdot \vec{F} =$

$$\iiint_V \vec{\nabla} \bullet \vec{F} \ dV =$$

6b. (8 pts) Compute $\iint_{D} \vec{F} \cdot d\vec{S}.$ (HINT: You parametrize the disk.) $\vec{R}(r,\theta) =$ $\vec{R}_r =$ $\vec{R}_{\theta} =$ $\vec{N} =$ $\vec{F}(\vec{R}(r,\theta)) =$ $\iint_{N} \vec{F} \cdot d\vec{S} =$ Recall $F = (xz, yz, x^2 + y^2)$ and *V* is the solid hemisphere $0 \le z \le \sqrt{4 - x^2 - y^2}$. **6c.** (9 pts) Compute $\iint_H \vec{F} \cdot d\vec{S}$ over the hemisphere parametrized by $\vec{R}(\varphi, \theta) = (2 \sin \varphi \cos \theta, 2 \sin \varphi \sin \theta, 2 \cos \varphi)$ $\vec{R}_{\varphi} =$ $\vec{R}_{\theta} =$ $\vec{N} =$

$$\vec{F}(\vec{R}(\varphi,\theta)) =$$

$$\vec{F} \bullet \vec{N} =$$

$$\iint_{H} \vec{F} \bullet d\vec{S} =$$

6d. (3 pts) Combine
$$\iint_{H} \vec{F} \cdot d\vec{S}$$
 and $\iint_{D} \vec{F} \cdot d\vec{S}$. to obtain $\iint_{\partial V} \vec{F} \cdot d\vec{S}$.

Be sure to discuss the orientations of the surfaces (here or above) and give a formula before you plug in numbers.

$$\iint_{\partial V} \vec{F} \bullet d\vec{S} =$$

7. (20 points) The paraboloid at the right is the graph of the equation $z = 4x^2 + 4y^2$. It may be parametrized as

 $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 4r^2).$

Find the area of the paraboloid for $z \le 16$.

