Name	ID	Section	1-4	/32
MATH 253 Honors	EXAM 3	Fall 1999	5	/25
Sections 201-202		P. Yasskin	6	/25
Multiple Choice: (8 points each)			7	/20

1. Compute the line integral $\int_{A}^{B} \vec{F} \cdot \overrightarrow{d s} \quad$ of the vector field $\quad \vec{F}=(y z,-x z, z) \quad$ along the helix H parametrized by $\quad \vec{r}(t)=(3 \cos t, 3 \sin t, 4 t) \quad$ between $\quad A=(3,0,0)$ and $\quad B=(-3,0,4 \pi)$.
a. 20π
b. 26π
c. $26 \pi^{2}$
d. -20π
e. $-10 \pi^{2}$
2. Find the total mass of the helix H parametrized by $\quad \vec{r}(t)=(3 \cos t, 3 \sin t, 4 t) \quad$ between $A=(3,0,0) \quad$ and $\quad B=(-3,0,4 \pi) \quad$ if the linear mass density is $\quad \rho=z^{2}$.
a. $\frac{16 \pi^{3}}{3}$
b. $\frac{40 \pi^{3}}{3}$
c. $\frac{80 \pi^{3}}{3}$
d. $16 \pi^{3}$
e. $80 \pi^{3}$
3. Compute $\quad \oint\left(-x y^{2} d x+x^{2} y d y\right) \quad$ counterclockwise around the complete boundary of the triangle whose vertices are $(0,0),(2,4)$ and $(0,4)$. HINT: Use Green's Theorem.
a. 4
b. 8
c. 16
d. 32
e. 64
4. Compute $\int(y z d x+x z d y+x y d z) \quad$ along the curve $\vec{r}(t)=\left(e^{\sin 4 t}, \cos 5 t, \ln \left(1+\frac{t}{\pi}\right)\right) \quad$ between $t=0$ and $t=\pi$. HINT: Find a scalar potential for $\vec{F}=(y z, x z, x y)$.
a. $-\ln 2$
b. $1-\ln 2$
c. $-1-\ln 2$
d. $1+\ln 2$
e. $-1+\ln 2$
5. (25 points) Stokes' Theorem states that if S is a surface in 3-space and ∂S is its boundary curve traversed counterclockwise as seen from the tip of the normal to S then

$$
\iint_{S} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial S} \vec{F} \cdot \overrightarrow{d s}
$$

Verify Stokes' Theorem if

$$
F=\left(y,-x, x^{2}+y^{2}\right)
$$

and S is the cone $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 2$ with normal pointing up and in.
The cone may be parametrized by:

$$
\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)
$$

5a. (16 points) Compute $\quad \iint_{S} \vec{\nabla} \times \vec{F} \cdot d \vec{S} \quad$ using the following steps:
$\vec{\nabla} \times \vec{F}=$
$\vec{R}_{r}=$
$\vec{R}_{\theta}=$
$\vec{N}=$

$$
(\vec{\nabla} \times \vec{F})(\vec{R}(r, \theta))=
$$

$\iint_{S} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=$

5b (9 points) Recall $F=\left(y,-x, x^{2}+y^{2}\right) \quad$ and S is the cone $\quad z=\sqrt{x^{2}+y^{2}} \quad$ with normal pointing up and in. Compute $\quad \oint \vec{F} \cdot d \vec{s} \quad$ using the following steps:
(Remember to check the orientation of the curve.)
$\vec{r}(\theta)=$
$\vec{v}(\theta)=$
$\vec{F}(\vec{r}(\theta))=$
$\oint \vec{F} \cdot \overrightarrow{d s}=$
${ }_{\partial S}$
6. (25 points) Gauss' Theorem states that if V is a solid region and ∂V is its boundary surface with outward normal then

$$
\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iint_{\partial V} \vec{F} \cdot d \vec{S}
$$

Verify Gauss' Theorem if

$$
F=\left(x z, y z, x^{2}+y^{2}\right)
$$

and V is the solid hemisphere

$$
0 \leq z \leq \sqrt{4-x^{2}-y^{2}} .
$$

Notice that ∂V consists of two parts:
the hemisphere $H: \quad z=\sqrt{4-x^{2}-y^{2}}$

and a disk $D: \quad x^{2}+y^{2} \leq 4$ with $z=0$
6a. (5 pts) Compute $\quad \iiint_{V} \vec{\nabla} \cdot \vec{F} d V$.
HINT: Compute the divergence in rectangular and the integral in spherical.
$\vec{\nabla} \cdot \vec{F}=$
$\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=$

6b. (8 pts) Compute $\iint_{D} \vec{F} \bullet d \vec{S}$. (HINT: You parametrize the disk.)
$\vec{R}(r, \theta)=$
$\vec{R}_{r}=$
$\vec{R}_{\theta}=$
$\vec{N}=$
$\vec{F}(\vec{R}(r, \theta))=$
$\iint_{D} \vec{F} \cdot d \vec{S}=$

Recall $\quad F=\left(x z, y z, x^{2}+y^{2}\right) \quad$ and V is the solid hemisphere $0 \leq z \leq \sqrt{4-x^{2}-y^{2}}$.
6c. (9 pts) Compute $\quad \iint_{H} \vec{F} \cdot d \vec{S} \quad$ over the hemisphere parametrized by
$\vec{R}(\varphi, \theta)=(2 \sin \varphi \cos \theta, 2 \sin \varphi \sin \theta, 2 \cos \varphi)$
$\vec{R}_{\mathscr{\varphi}}=$
$\vec{R}_{\theta}=$
$\vec{N}=$
$\vec{F}(\vec{R}(\varphi, \theta))=$
$\vec{F} \cdot \vec{N}=$
$\iint_{H} \vec{F} \cdot d \vec{S}=$

6d. (3 pts) Combine $\iint_{H} \vec{F} \cdot d \vec{S}$ and $\iint_{D} \vec{F} \cdot d \vec{S}$. to obtain $\iint_{\partial V} \vec{F} \cdot d \vec{S}$.
Be sure to discuss the orientations of the surfaces (here or above) and give a formula before you plug in numbers.
$\iint_{\partial V} \vec{F} \cdot d \vec{S}=$
7. (20 points) The paraboloid at the right is the graph of the equation $z=4 x^{2}+4 y^{2}$. It may be parametrized as

$$
\vec{R}(r, \theta)=\left(r \cos \theta, r \sin \theta, 4 r^{2}\right) .
$$

Find the area of the paraboloid for $z \leq 16$.

