Name	ID	_ Section	1-7	/49
			8	/15
MATH 253 Honors	FINAL EXAM	Fall 1999		
Sections 201-202		P. Yasskin	9	/10
Multiple Choice: (7 points each)			10	/15
	each		11	/15
1 Consider the line through	where the point $D = (A)$	(1.4) which is pare	ndioulor	to the

- **1**. Consider the line through the point P = (4, 4, 4)plane x + 2y + 3z = 7. Its tangent vector is
- which is perpendicular to the

Т

- 2. Find the plane tangent to the hyperbolic paraboloid x - yz = 0at the point P = (6, 3, 2).Which of the following points does not lie on this plane?
 - **a**. (-6, 0, 0)

a. (3,2,1) **b**. (1,2,3) **c**. (7,6,5) **d**. (5,6,7) e. (4, 4, 4)

- **b**. (0,3,0)
- c. (0,0,2)
- **d**. (1,-1,-1)
- **e**. (−1, 1, 1)
- 3. Duke Skywater is flying the Millenium Eagle through a polaron field. His galactic coordinates are (2300, 4200, 1600)measured in lightseconds and his velocity is measured in lightseconds per second. He measures the strength of $\vec{v} = (.2, .3, .4)$ the polaron field is p = 274 milliwookies and its gradient is $\vec{\nabla} p = (3, 2, 2)$ milliwookies per lightsecond. Assuming a linear approximation for the polaron field and that his velocity is constant, how many seconds will Duke need to wait until the polaron 286 milliwookies? field has grown to
 - **a**. 2
 - **b**. 3
 - **c**. 4
 - **d**. 6
 - **e**. 12

- 4. Consider the surface *S* parametrized by $\vec{R}(u,v) = (u+v,u-v,uv)$ for $0 \le u \le 2$ and $0 \le v \le 4$. Compute $\iint_{S} \vec{F} \cdot d\vec{S}$ where $\vec{F} = (y,x,y)$.
 - **a**. -32
 - **b**. -16
 - **c**. 16
 - **d**. 32
 - **e**. 64
- **5**. Consider the surface *S* parametrized by $\vec{R}(u,v) = (u+v,u-v,uv)$. Find the plane tangent to this surface at the point $P = \vec{R}(1,2) = (3,-1,2)$. Which of the following points does not lie on this plane?
 - **a**. (3,0,0)
 - **b**. (0, 4, 0)
 - **c**. (0, 0, -2)
 - **d**. (1,1,0)
 - **e**. (0, 6, 1)

6. Compute $\oint (-x^2y^2 dx + 2xy^3 dy)$ over the complete boundary of the semicircular $0 \le y \le \sqrt{4 - x^2}$ traversed counterclockwise. area

- **a**. 0 **b**. 16
- **c**. $\frac{4}{5}$ **d**. $\frac{80}{5}$ **e**. $\frac{128}{5}$
- 7. Compute $\iint \frac{x^3 z^2}{3} dy dz + \frac{y^3 z^2}{3} dz dx + \frac{z^5}{5} dx dy$ over the complete surface of the sphere $x^2 + y^2 + z^2 = 4$ with outward normal.
 - **a.** $\frac{512\pi}{21}$ **b.** $\frac{32\pi^2}{5}$ **c.** $\frac{128\pi}{5}$ **d.** $\frac{16\pi}{3}$ **e.** $\frac{256\pi}{15}$

(15 points) Find the point in the first octant on the surface closest to the origin.

 $z = \frac{32}{x^4 y^2}$ which is

9. (10 points) Compute $\iint_R x \, dA$

over the region R in the first quadrant bounded by the curves

 $y = x^2$, $y = x^4$ and y = 16.

$$\begin{array}{c|c} 15 \\ 10 \\ y \\ 5 \\ 0 \\ \frac{2}{x} \\ 4 \end{array}$$

10. (15 points) Find the mass and center of mass of the solid below the paraboloid $z = 4 - x^2 - y^2$ above the *xy*-plane, if the density is $\delta = x^2 + y^2$. (11 points for setting up the integrals and the final formula.)

11. (15 points) Find the area and centroid of the **right** leaf of the rose

 $r = 2\cos^2\theta$.

(12 points for setting up the integrals and the final formula.)

