Name \qquad

Section__-	$1-7$	$/ 49$
Fall 1999 P. Yasskin	8	$/ 15$
	9	$/ 10$
10	$/ 15$	
11	$/ 15$	

Multiple Choice: (7 points each)
FINAL EXAM Fall 1999
Sections 201-202

1. Consider the line through the point $\quad P=(4,4,4)$ which is perpendicular to the plane $x+2 y+3 z=7$. Its tangent vector is
a. $(3,2,1)$
b. $(1,2,3)$
c. $(7,6,5)$
d. $(5,6,7)$
e. $(4,4,4)$
2. Find the plane tangent to the hyperbolic paraboloid $x-y z=0$ at the point $P=(6,3,2)$. Which of the following points does not lie on this plane?
a. $(-6,0,0)$
b. $(0,3,0)$
c. $(0,0,2)$
d. $(1,-1,-1)$
e. $(-1,1,1)$
3. Duke Skywater is flying the Millenium Eagle through a polaron field. His galactic coordinates are $(2300,4200,1600) \quad$ measured in lightseconds and his velocity is $\vec{v}=(.2, .3, .4) \quad$ measured in lightseconds per second. He measures the strength of the polaron field is $\quad p=274$ milliwookies and its gradient is $\quad \vec{\nabla} p=(3,2,2)$ milliwookies per lightsecond. Assuming a linear approximation for the polaron field and that his velocity is constant, how many seconds will Duke need to wait until the polaron field has grown to 286 milliwookies?
a. 2
b. 3
c. 4
d. 6
e. 12
4. Consider the surface S parametrized by $\quad \vec{R}(u, v)=(u+v, u-v, u v) \quad$ for $\quad 0 \leq u \leq 2$ and $0 \leq v \leq 4$. Compute $\iint_{S} \vec{F} \cdot \vec{d} \quad$ where $\quad \vec{F}=(y, x, y)$.
a. -32
b. -16
c. 16
d. 32
e. 64
5. Consider the surface S parametrized by $\quad \vec{R}(u, v)=(u+v, u-v, u v)$. Find the plane tangent to this surface at the point $\quad P=\vec{R}(1,2)=(3,-1,2)$. Which of the following points does not lie on this plane?
a. $(3,0,0)$
b. $(0,4,0)$
c. $(0,0,-2)$
d. $(1,1,0)$
e. $(0,6,1)$
6. Compute $\oint\left(-x^{2} y^{2} d x+2 x y^{3} d y\right) \quad$ over the complete boundary of the semicircular area $0 \leq y \leq \sqrt{4-x^{2}} \quad$ traversed counterclockwise.
a. 0
b. 16
c. $\frac{4}{5}$
d. $\frac{80}{5}$
e. $\frac{128}{5}$
7. Compute $\iint_{S} \frac{x^{3} z^{2}}{3} d y d z+\frac{y^{3} z^{2}}{3} d z d x+\frac{z^{5}}{5} d x d y \quad$ over the complete surface of the sphere $\quad x^{2}+y^{2}+z^{2}=4 \quad$ with outward normal.
a. $\frac{512 \pi}{21}$
b. $\frac{32 \pi^{2}}{5}$
c. $\frac{128 \pi}{5}$
d. $\frac{16 \pi}{3}$
e. $\frac{256 \pi}{15}$
8. (15 points) Find the point in the first octant on the surface $z=\frac{32}{x^{4} y^{2}}$ which is closest to the origin.
9. (10 points) Compute $\iint_{R} x d A$ over the region R in the first quadrant bounded by the curves
$y=x^{2}, \quad y=x^{4} \quad$ and $\quad y=16$.

10. (15 points) Find the mass and center of mass of the solid below the paraboloid $\quad z=4-x^{2}-y^{2}$ above the $x y$-plane, if the density is $\delta=x^{2}+y^{2}$. (11 points for setting up the integrals and the final formula.)

11. (15 points) Find the area and centroid of the right leaf of the rose

$$
r=2 \cos ^{2} \theta .
$$

(12 points for setting up the integrals and the final formula.)

