Name \qquad
Math $304 \quad$ Exam 1 Version B Spring 2017
Section 501
P. Yasskin

Points indicated. Show all work.

1	$/ 20$	3	$/ 30$
2	$/ 45$	4	$/ 10$
		Total	$/ 105$

1. (20 points) Consider the traffic flow system shown at the right.
a. Write out the equations for the system. Write out the augmented matrix.
Keep the variables in the order w, x, y, z. DO NOT SOLVE THE SYSTEM.

b. Compute the determinant of the matrix of coefficients.
c. One solution is $w=300, x=400, y=100, z=200$. How many solutions are there?

Circle one:
Exactly 1 solution. Exactly 2 solutions. Exactly 4 solutions. Infinitely many solutions.
2. (45 points) Let $A=\left(\begin{array}{ccccc}1 & 2 & 0 & 1 & 0 \\ -1 & -2 & 2 & 5 & 2 \\ 2 & 4 & 0 & 2 & 1 \\ -1 & -2 & 1 & 2 & 1\end{array}\right)$.
a. Transform A into reduced row eschelon form. Call the result $\operatorname{rref}(A)$. (Be sure to give reasons for each step.)
b. How many leading 1 's are there in $\operatorname{rref}(A)$?
\#1's = \qquad
c. What are the dimensions of the null space, column space and row space of A ?

$$
\operatorname{dim}(N(A))=
$$

$$
\operatorname{dim}(\operatorname{Col}(A))=
$$

\qquad

$$
\operatorname{dim}(\operatorname{Row}(A))=
$$

d. Find a basis for $\operatorname{Col}(A)$.
e. Find a basis for $\operatorname{Row}(A)$.
f. Find a basis for $N(A)$.
3. (30 points) Consider the vector space $P_{3}=\{$ polynomials of degree $<3\}$. The standard basis is

$$
e_{1}=1 \quad e_{2}=x \quad e_{3}=x^{2}
$$

Let the f basis be

$$
f_{1}=1+x^{2} \quad f_{2}=x+x^{2} \quad f_{3}=x^{2}
$$

Let the g basis be

$$
g_{1}=1 \quad g_{2}=1+x \quad g_{3}=1+x^{2}
$$

a. Find the change of basis matrix from the f basis to the e basis. Call it $\underset{e \longleftarrow f}{C}$.
b. Find the change of basis matrix from the g basis to the e basis. Call it C.

$$
e \leftarrow g
$$

c. Find the change of basis matrix from the f basis to the g basis. Call it $\underset{g \longleftarrow f}{C} \dot{f}$
d. Use $\underset{g \longleftarrow f}{C}$ to rewrite the polynomial $p=5 f_{1}+2 f_{2}-3 f_{3}$ in the g basis,
i.e. find a, b, and c so that $p=a g_{1}+b g_{2}+c g_{3}$.
4. (10 points) By definition, a matrix, A, is idempotent if $A^{2}=A$.
a. Show if A is idempotent then $\mathbf{1 - A}$ is also idempotent.
b. Show if A is idempotent then $\mathbf{1}+A$ is non-singular and $(\mathbf{1}+A)^{-1}=\mathbf{1}-\frac{1}{2} A$.

