1	$/ 20$	3	$/ 45$
2	$/ 20$	4	$/ 30$
		Total	$/ 115$

1. (20 points) Determine which of the following functions is linear and which is not. If it is linear, prove it. If it is not linear, show why it violates the definition.
a. $L: P_{3} \rightarrow P_{3}: L(p)=x+p^{\prime}(x)$
b. $L: P_{3} \rightarrow P_{3}: L(p)=x p^{\prime}(x)$
2. (20 points) Let $M(2,2)$ be the vector space of 2×2 matrices.

Recall $\quad(X Y)_{i j}=\sum_{k=1}^{2} X_{i k} Y_{k j} \quad$ and $\quad \operatorname{tr}(X)=\sum_{i=1}^{2} X_{i i}=X_{11}+X_{22}$
Determine which of the following is an inner product on $M(2,2)$ and which is not. If it is an inner product, prove it.
If it is not an inner product, show why it violates the definition.
a. $\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)$
b. $\langle X, Y\rangle=\operatorname{tr}(X) \operatorname{tr}(Y)$
3. (45 points) Let $V=\operatorname{Span}\left(\sin ^{2} \theta, \cos ^{2} \theta\right)$ be the vector space of functions spanned by the basis functions $e_{1}=\sin ^{2} \theta$ and $e_{2}=\cos ^{2} \theta$. Here are some properties of these functions:

$$
\begin{array}{ll}
\frac{d e_{1}}{d \theta}=2 \sin \theta \cos \theta & \frac{d e_{2}}{d \theta}=-2 \cos \theta \sin \theta \\
\frac{d^{2} e_{1}}{d \theta^{2}}=2 \cos ^{2} \theta-2 \sin ^{2} \theta & \frac{d^{2} e_{2}}{d \theta^{2}}=2 \sin ^{2} \theta-2 \cos ^{2} \theta \\
1=\sin ^{2} \theta+\cos ^{2} \theta & \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
\end{array}
$$

a. Consider the linear operator $L: V \rightarrow V$ which computes second derivatives: $L(f)=\frac{d^{2} f}{d \theta^{2}}$. Find the matrix of L relative to the $\left(e_{1}, e_{2}\right)$ basis. Call it $\underset{e \leftarrow e}{A}$.
b. Another basis is $E_{1}=1$ and $E_{2}=\cos 2 \theta$.

Find the change of basis matrix from the E basis to the e basis. Call it $\underset{e \leftarrow E}{C}$.

Find the change of basis matrix from the e basis to the E basis. Call it $\underset{E \leftarrow e}{C}$.
c. Use the results of (a.) and (b.) to find the matrix of L relative to the $\left(E_{1}, E_{2}\right)$ basis. Call it $\underset{E \leftarrow E}{B}$.
d. Using the matrix $\underset{E \leftarrow E}{B}$, what are $L(1)=L\left(E_{1}\right)$ and $L(\cos 2 \theta)=L\left(E_{2}\right)$?
4. (30 points) Let $V=\operatorname{Span}\left(x, x^{2}\right)$ be the vector space spanned by the functions

$$
v_{1}=x \quad \text { and } \quad v_{2}=x^{2} .
$$

Use the inner product on V given by

$$
\langle f, g\rangle=\int_{0}^{1} f g d x
$$

a. Find the angle between v_{1} and $v_{2} .$.
b. Start with the basis v_{1} and v_{2} and use the Gram-Schmidt procedure to produce an orthogonal basis w_{1} and w_{2} and an orthonormal basis u_{1} and u_{2}.

