Name			1	/20	3	/45
Math 304	Exam 2	Spring 2017		120	5	/43
Section 501		P. Yasskin	2	/20	4	/30
Points indicated. Show all work.					Total	/115

1. (20 points) Determine which of the following functions is linear and which is not. If it is linear, prove it.

If it is not linear, show why it violates the definition.

a. $L: P_3 \to P_3: L(p) = x + p'(x)$

b. $L: P_3 \to P_3: L(p) = xp'(x)$

2. (20 points) Let M(2,2) be the vector space of 2×2 matrices.

Recall $(XY)_{ij} = \sum_{k=1}^{2} X_{ik} Y_{kj}$ and $tr(X) = \sum_{i=1}^{2} X_{ii} = X_{11} + X_{22}$

Determine which of the following is an inner product on M(2,2) and which is not. If it is an inner product, prove it.

If it is not an inner product, show why it violates the definition.

a. $\langle X, Y \rangle = tr(X^{\mathsf{T}}Y)$

b. $\langle X, Y \rangle = tr(X) tr(Y)$

3. (45 points) Let $V = Span(\sin^2\theta, \cos^2\theta)$ be the vector space of functions spanned by the basis functions $e_1 = \sin^2\theta$ and $e_2 = \cos^2\theta$. Here are some properties of these functions:

$$\frac{de_1}{d\theta} = 2\sin\theta\cos\theta \qquad \qquad \frac{de_2}{d\theta} = -2\cos\theta\sin\theta$$
$$\frac{d^2e_1}{d\theta^2} = 2\cos^2\theta - 2\sin^2\theta \qquad \qquad \frac{d^2e_2}{d\theta^2} = 2\sin^2\theta - 2\cos^2\theta$$
$$1 = \sin^2\theta + \cos^2\theta \qquad \qquad \cos^2\theta = \cos^2\theta - \sin^2\theta$$

- **a**. Consider the linear operator $L: V \to V$ which computes second derivatives: $L(f) = \frac{d^2f}{d\theta^2}$. Find the matrix of L relative to the (e_1, e_2) basis. Call it A.
- **b**. Another basis is $E_1 = 1$ and $E_2 = \cos 2\theta$. Find the change of basis matrix from the *E* basis to the *e* basis. Call it $\underset{e \leftarrow E}{C}$.

Find the change of basis matrix from the *e* basis to the *E* basis. Call it $C \dots E \leftarrow e$

c. Use the results of (a.) and (b.) to find the matrix of *L* relative to the (E_1, E_2) basis. Call it $\underset{E \leftarrow E}{B}$.

d. Using the matrix $\underset{E \leftarrow E}{B}$, what are $L(1) = L(E_1)$ and $L(\cos 2\theta) = L(E_2)$?

4. (30 points) Let $V = Span(x, x^2)$ be the vector space spanned by the functions

 $v_1 = x$ and $v_2 = x^2$.

Use the inner product on *V* given by

$$\langle f,g\rangle = \int_0^1 fg\,dx$$

a. Find the angle between v_1 and v_2 .

b. Start with the basis v_1 and v_2 and use the Gram-Schmidt procedure to produce an orthogonal basis w_1 and w_2 and an orthonormal basis u_1 and u_2 .