Name					
Math 304 Final Exam	Spring 2017	1	/20	3	/15
Section 501	P. Yasskin	2	/32	4	/35
Points indicated. Show all work.				Total	/102
You do not need to	prove any basis is linear	ly independent	in any p	roblem.	
1. (20 points) Consider the ve	ector space $P_3 = \{ polynomial \}$	mials of degree	< 3 \}.		
a . Take the standard basis	s to be $e_1 = 1$ $e_2 = x$	$e_3 = x^2$.			
Find the components of	$p = 2 + 3x + 4x^2$ rela	ative to the <i>e</i> b	asis.	$p_e = \left($	
b . Another basis is $f_1 =$	$1 + x$ $f_2 = 1 + x^2$ $f_3 =$	2 + x.			
Find the change of basis	matrix from the f basis t	o the <i>e</i> basis.			
			$C = \left(\begin{array}{c} c \\ c \leftarrow f \end{array} \right)$		

c. Find the change of basis matrix from the e basis to the f basis.

d. Find the components of $p = 2 + 3x + 4x^2$ relative to the *f* basis.

e. Find the polynomial q whose components relative to the f basis are q_f =

 $C = f \leftarrow e$

2. (32 points) Let $P_2 = \{ \text{polynomials of degree } < 2 \}$ and $P_3 = \{ \text{polynomials of degree } < 3 \}$. Consider the linear map $L: P_2 \to P_3$ given by $L(p) = 2 \int_{1}^{x} p \, dx$. For example: $L(3+4x) = 2\int_{1}^{x} (3+4x) dx = 2[3x+2x^2]_{1}^{x} = 2(3x+2x^2-5) = -10+6x+4x^2.$ NOTE: $\{0\} = Span(0)$

a. Find the image of L. What is its dimension? HINT: Take the general element of P_2 to be p = a + bx.

b. Find the kernel of *L*. What is its dimension?

Circle one:

Circle one:

No

No

Yes

Yes

- c. Is L onto? Why? Because:
- Is L one-to-one? Why? d. Because:
- **e**. Find the matrix of *L* relative to the standard bases.

 $e_1 = 1$ $e_2 = x$ for P_2 $E_1 = 1$ $E_2 = x$ $E_3 = x^2$ for P_3

(continued)

2

f. Find the null space of *A*. What is its dimension?

g. Find the column space of A. What is its dimension?

Col(L) = Span)
$\dim Col(L) =$	

h. Find the row space of *A*. What is its dimension?

3. (15 points) Consider the polynomial vector space $V = Span(x, x^2)$ with the inner product

$$\langle f,g\rangle = \int_0^1 \frac{fg}{x} \, dx$$

a. Find the angle between $v_1 = x$ and $v_2 = x^2$.

b. Start with the basis $v_1 = x$ and $v_2 = x^2$ and use the Gram-Schmidt procedure to produce an orthogonal basis w_1 and w_2 and an orthonormal basis u_1 and u_2 .

$w_1 =$	

u_1	=			

$w_2 =$		

- **4**. (35 points) Consider the matrix $A = \begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$.
 - **a**. Find the eigenvalues of *A*. List them in ascending order.

b. Find the eigenvectors of A.

2.	=	•
	_	 •

 $\lambda_2 =$

 $\lambda_1 =$ ____

 $\lambda_2 =$ ___:

(continued)

Recall: $A = \begin{pmatrix} 4 & 2 \\ -1 & 1 \end{pmatrix}$.

c. Find a diagonal matrix D and an invertible matrix X so that $A = XDX^{-1}$.

d. Find X^{-1} .

e. Compute $\cos(\pi A)$.

HINT: If
$$D = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$
, then $\pi D = \begin{pmatrix} \alpha \pi & 0 \\ 0 & \beta \pi \end{pmatrix}$. What is $\cos(\pi D)$?

