\qquad

1	$/ 20$	3	$/ 15$
2	$/ 32$	4	$/ 35$
		Total	$/ 102$

Points indicated. Show all work.
$\begin{array}{lrr}\text { Math } 304 & \text { Final Exam } & \text { Spring } 2017 \\ \text { Section } 501 & & \text { P. Yasskin }\end{array}$
P. Yasskin

You do not need to prove any basis is linearly independent in any problem.

1. (20 points) Consider the vector space $P_{3}=\{$ polynomials of degree $<3\}$.
a. Take the standard basis to be $e_{1}=1 \quad e_{2}=x \quad e_{3}=x^{2}$.

Find the components of $\quad p=2+3 x+4 x^{2} \quad$ relative to the e basis.

b. Another basis is $\quad f_{1}=1+x \quad f_{2}=1+x^{2} \quad f_{3}=2+x$.

Find the change of basis matrix from the f basis to the e basis.

c. Find the change of basis matrix from the e basis to the f basis.

d. Find the components of $p=2+3 x+4 x^{2} \quad$ relative to the f basis.

e. Find the polynomial q whose components relative to the f basis are $q_{f}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$

Simplify fully.
2. (32 points) Let $P_{2}=\{$ polynomials of degree $<2\}$ and $P_{3}=\{$ polynomials of degree $<3\}$. Consider the linear map $L: P_{2} \rightarrow P_{3}$ given by $L(p)=2 \int_{1}^{x} p d x$.
For example: $L(3+4 x)=2 \int_{1}^{x}(3+4 x) d x=2\left[3 x+2 x^{2}\right]_{1}^{x}=2\left(3 x+2 x^{2}-5\right)=-10+6 x+4 x^{2}$.
NOTE: $\quad\{0\}=\operatorname{Span}(0)$
a. Find the image of L. What is its dimension?

HINT: Take the general element of P_{2} to be $p=a+b x$.

$\operatorname{Im}(L)=\operatorname{Span}(\square$
$\operatorname{dim} \operatorname{Im}(L)=$

b. Find the kernel of L. What is its dimension?

$\operatorname{Ker}(L)=\operatorname{Span}(\square$
$\operatorname{dim} \operatorname{Ker}(L)=$

c. Is L onto? Why?

Circle one:
Because:
Yes No
d. Is L one-to-one? Why?

Because:

Circle one:	
Yes	No

e. Find the matrix of L relative to the standard bases.

$$
\begin{array}{llll}
e_{1}=1 & e_{2}=x & & \text { for } P_{2} \\
E_{1}=1 & E_{2}=x & E_{3}=x^{2} & \text { for } P_{3}
\end{array}
$$

(continued)
f. Find the null space of A. What is its dimension?

$\operatorname{Null}(L)=\operatorname{Span}(\square$
$\operatorname{dim} \operatorname{Null}(L)=$

g. Find the column space of A. What is its dimension?

$\operatorname{Col}(L)=\operatorname{Span}($
$\operatorname{dim} \operatorname{Col}(L)=$

h. Find the row space of A. What is its dimension?

$\operatorname{Row}(L)=\operatorname{Span}(\square$
$\operatorname{dim} \operatorname{Row}(L)=$

3. (15 points) Consider the polynomial vector space $V=\operatorname{Span}\left(x, x^{2}\right)$ with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} \frac{f g}{x} d x
$$

a. Find the angle between $v_{1}=x$ and $v_{2}=x^{2}$.

b. Start with the basis $v_{1}=x$ and $v_{2}=x^{2}$ and use the Gram-Schmidt procedure to produce an orthogonal basis w_{1} and w_{2} and an orthonormal basis u_{1} and u_{2}.
$u_{1}=$
$w_{2}=$ $u_{2}=$
4. (35 points) Consider the matrix $A=\left(\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right)$.
a. Find the eigenvalues of A. List them in ascending order.

$$
\lambda_{1}=\square \quad \lambda_{2}=
$$

b. Find the eigenvectors of A.

$$
\lambda_{1}=\square
$$

\qquad

(continued)

Recall: $\quad A=\left(\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right)$.
c. Find a diagonal matrix D and an invertible matrix X so that $A=X D X^{-1}$.

d. Find X^{-1}.

e. Compute $\cos (\pi A)$.

HINT: If $D=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, then $\pi D=\left(\begin{array}{cc}\alpha \pi & 0 \\ 0 & \beta \pi\end{array}\right)$. What is $\cos (\pi D)$?

