MATH 304
Sections 501
Linear Algebra
Spring 2017

## Due Dates:

- 1/27: HW 1: 1.1, 1.2

2/1: HW 2: $1.3,1.4,1.5$

- 2/6: HW 3: 2.1,2.2
- 2/13: HW 4: 3.1,3.2
- 2/20: HW 5: 3.3, 3.4
- 2/27: HW 6: 3.5, 3.6, Exam 1 .
- 3/22: HW 7: 4.1, 4.2, 4.3
- 3/29: HW 8: 5.1, 5.4
- 4/5: HW 9: 5.5, 5.6
- 4/12: Exam 2.
- 4/24: HW 10: 6.1, 6.3

Homework P. Yasskin
$\qquad$
Assignments: (Underlined are the most important.)

- Section $1.1-$ p. 10: \# 6e, 6h, 7, $\underline{8}$ (Use reduced row echelon form from Sec 1.2 instead of back substitution.), 9

- Section 1.3 - p. 42: \# 1d, 1e, 1f, 1g, 1h, 2, 3, 4b, 8, 要, 10ab
- Section 1.4 - p. 56: \# ́, 4, 5, ́, 7, 11acd, 13c, $\underline{\mathbf{1 6}}, 17, \underline{\mathbf{2 0}}, 23,24 \mathrm{c}, \underline{\mathbf{2}}$
 12a, 12d
- Section 2.1 - p. 90: \# 3b, 3f, 3h, 4bcd, 6, 9, 11
- Section 2.2 - p. 97: \# 2, 4, 6, 7, $\underline{\mathbf{1 0}}, 12$
- Section 2.3 - p. 105: \# 1c, 2b, 5, 9
- Section 3.1 - p. 116: \#5, 8, ㅂ, 11, $\underline{\mathbf{1 2}, 14}$
- Section 3.2 - p. 125: \# 1, 3bcdef, 4ab, 5be, 6abc, 6de, $\underline{\mathbf{8}}, \underline{\mathbf{1 3}}, 14,16,19, \underline{22}$
- Section 3.3 - p. 137: \# 2bce, 3bce, 5, 7, 8ac, 16, 17
- Section 3.4 - p. 143: \# 2bce, 5, 9, 11, 12, 13, 16
- Section $3.5-$ p. 153: \# 1ab, $3 \mathrm{ab}, \underline{\mathbf{5}}, \underline{\mathbf{9}}$ (and express $3 x+2$ in the $[2 x-1,2 x+1]$ basis.)
- Section 3.6 - p. 159: \# 1b, $\underline{\mathbf{3}}, 4 \mathrm{ad}, \underline{\mathbf{8}}, \underline{\mathbf{1 3}}, \underline{\mathbf{1 8}}, 22 \mathrm{a}, 26$
- Section 4.1 - p. 174: \# 1, 4(HINT: Write $(7,5)$ as a linear combination of $(1,2)$ and $(1,-1)$.), 5 , $8,11, \underline{\mathbf{1 3}}, 17, \underline{\mathbf{1 9}}, \underline{\mathbf{2 1}}, \underline{\mathbf{2 2}}, 23,25$
- Section $4.2-$ p. 187: \#4, 6, $\underline{\mathbf{8}}, 13, \underline{\mathbf{1 4}}, \underline{\mathbf{1 8}}$ (HINT: First find the matrix relative to the standard
bases for $\mathbb{R}^{3}$ and $\mathbb{R}^{2}$. Then multiply on the left and right by appropriate change of basis matrices.), 20
- Section 4.3 - p. 194: \# 2ab, 3, 5abc, $\underline{\mathbf{6}, ~ 7, ~ 9, ~ 11, ~ 13, ~} \underline{\mathbf{1 5}}$ (HINT: Use the formulas: $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i}{ }_{i}$ and $\left.(A B)_{j}^{i}=\sum_{k=1}^{n} A^{i}{ }_{k} B^{k}{ }_{j}.\right)$
- Section 5.1 - p. 212: \# 1bd, 2bd, 3bd, $\underline{\mathbf{1 3}}$, $\underline{\mathbf{1 7}, \underline{\mathbf{1 8}}}$
- Section 5.2 - p. 221: \#
- Section $5.3-$ p. 231: \#
- Section $5.4-$ p. 239: \# 3, 7ac, $\underline{\mathbf{8}}, 10,11, \underline{\mathbf{2 6}}, \underline{\mathbf{9}}$ (HINT: There is a trig identity for $\sin A \cos B$ in terms of $\sin (A+B)$ and $\sin (A-B)$.)
- Section $5.5-$ p. 257: \# $\underline{\mathbf{2}}, 4,6, \underline{9}$
- Section $5.6-$ p. 268: \# $\underline{\mathbf{3}}, 4$, Extra: Find an orthonormal basis for $P_{3}$ with the inner product $(p, q)=\int_{0}^{1} x p(x) q(x) \overline{d x}$ by applying the Gram-Schmidt procedure to $1, x, x^{2}$.
- Section 5.7 - p. 275: \#
- Section 6.1 - p. 294: \# 1acdghijl(Please list your eigenvalues in ascending order.), 3, 4, 7, 9, 10, 14, 28, 33
- Section 6.3 - p. 322: \# 1abcde(Please list your eigenvalues in ascending order.), 2abcde, 3abcde(if invertible), $\underline{4}$ (Do b before a.), 5, $\underline{\mathbf{1 8}}$ (Also: How are the eigenvalues and eigenvectors of B expressed in terms of those for A?), $\mathbf{2 9}$

