Definition and Properties of a Vector Space

Definition:

A Vector Space is a set V with the operations of vector addition \oplus and scalar multiplication \odot satisfying a set of axioms.

 $\begin{array}{l} \oplus : V \times V \to V : (u,v) \in V \times V \mapsto u \oplus v \in V \\ \odot : \mathbb{R} \times V \to V : (c,v) \in \mathbb{R} \times V \mapsto c \odot v \in V \end{array}$

Axioms:

Addition is commutative A1: $u \oplus v = v \oplus u$ A2: $(u \oplus v) \oplus w = u \oplus (v \oplus w)$ Addition is associative A3: $\exists \mathbf{0} \in V$ such that $v \oplus \mathbf{0} = v$ Existance of a zero A4: $\forall v \exists \ominus v$ such that $v \oplus \ominus v = \mathbf{0}$ Existance of negatives A5: $c \odot (u \oplus v) = c \odot u \oplus c \odot v$ Scalar multiplication distributes over vector addition A6: $(c+d) \odot v = c \odot v \oplus d \odot v$ Scalar multiplication distributes over scalar addition A7: $(cd) \odot v = c \odot (d \odot v)$ Scalar multiplication is associative. A8: $1 \odot v = v$ 1 is the identity for scalar multiplication.

Properties:

P1:	$0 \odot v = 0$			(This tells you how to find the zero.)
P2:	$v \oplus u = v$	\Rightarrow	u = 0	(This says the zero is unique.)
P3:	$u \oplus v = 0$	\Rightarrow	$v = \ominus u$	(This says negatives are unique.)
P4:	$(-1) \odot v =$	$\ominus v$		(This tells you how to find the negatives.)
P5:	$c \odot 0 = 0$			
P6:	$c \odot v = 0$	\Rightarrow	either $c =$	= 0 or v = 0