NetID		1	/15	
Exam 1 Hand Computations	Spring 2008	2	/15	
	F. TOSSNIT	3	/15	

4

5

Total

6

7

8

/5 Maple 1

/ 5 Maple 2

/10

/15

/ 5

/15

/15

/100

Problems 1-3: **Do 2 of the 3 problems**, **only**.

Identify the differential equation as one of the following types:

- a. Separable Equation
- b. Equation with Homogeneous Coefficients
- c. Linear Equation

Name____ MATH 308

Section 511

- d. Bernoulli Equation
- e. Exact Equation

Then solve the initial value problem.

1. (15 points) $\frac{dy}{dx} + \frac{y}{x} = 2x^2y^2$ with $y(1) = \frac{1}{2}$

Bernoulli Equation. Standard form is: $\frac{dy}{dx} + P(x)y = Q(x)y^n$ Here, n = 2 and we set $v = y^{1-n} = y^{-1}$. So $y = v^{-1}$ and $\frac{dy}{dx} = -v^{-2}\frac{dv}{dx}$. The equation becomes: $-v^{-2}\frac{dv}{dx} + \frac{1}{x}v^{-1} = 2x^2v^{-2}$ or $\frac{dv}{dx} - \frac{1}{x}v = -2x^2$ This is linear. $P = \frac{-1}{x}$ $I = e^{\int Pdx} = e^{-\ln x} = \frac{1}{x}$ We multiply by the integrating factor: $\frac{1}{x}\frac{dv}{dx} - \frac{1}{x^2}v = -2x$ or $\frac{d}{dx}(\frac{v}{x}) = -2x$ We integrate: $\frac{v}{x} = -x^2 + C$ $v = -x^3 + Cx$ $y = \frac{1}{v} = \frac{1}{-x^3 + Cx}$ Apply the initial condition: x = 1, $y = \frac{1}{2}$, $v = 2 = -x^3 + Cx = -1 + C$ C = 3 $y = \frac{1}{-x^3 + 3x}$

2. (15 points) $(-e^{-x} + e^{y}) dx + (xe^{y} + e^{y}) dy = 0$ with y(1) = 0

Exact Equation. Check it is exact: $\frac{d}{dy}(-e^{-x}+e^y) = e^y$ and $\frac{d}{dx}(xe^y+e^y) = e^y$ Since they are equal, it is exact. Find the scalar potential: $\frac{\partial F}{\partial x} = -e^{-x} + e^y \implies F = e^{-x} + xe^y + f(y)$ $\frac{\partial F}{\partial y} = xe^y + e^y \implies F = xe^y + e^y + g(x)$ So $F = xe^y + e^y + e^{-x} = C$ Apply the initial conditions: x = 1, $y = 0 \implies$ $F = xe^y + e^y + e^{-x} = 1 + 1 + e^{-1} = C = 2 + e^{-1}$ So the implicit solution is: $xe^y + e^y + e^{-x} = 2 + e^{-1}$ Solve for y: $(x + 1)e^y = 2 + e^{-1} - e^{-x}$ $y = \ln\left(\frac{2 + e^{-1} - e^{-x}}{x + 1}\right)$ **3.** (15 points) $\frac{dy}{dx} = \frac{x^2}{y^2} + \frac{y}{x}$ with y(1) = 3

Equation with Homogeneous Coefficients.

- We set $v = \frac{y}{x}$ or y = xv and $\frac{dy}{dx} = x\frac{dv}{dx} + v$ The equation becomes: $x\frac{dv}{dx} + v = \frac{1}{v^2} + v$ or $x\frac{dv}{dx} = \frac{1}{v^2}$ This is separable. We separate: $\int v^2 dv = \int \frac{dx}{x} \frac{v^3}{3} = \ln|x| + C$ Apply the initial conditions: x = 1, y = 3, $v = \frac{y}{x} = 3$ $\frac{v^3}{3} = 9 = \ln|x| + C = \ln 1 + C = C$ $\frac{v^3}{3} = \ln|x| + 9$ $v = (3\ln|x| + 27)^{1/3}$ $y = xv = x(3\ln|x| + 27)^{1/3}$
- 4. (5 points) Which of the following is the direction field of the differential equation: $\frac{dy}{dx} = xy.$ Circle the correct answer:

5. (5 points) On the following direction field, draw the solution curve with the initial condition y(1) = 2.

6. (10 points) Find the general solution of the differential equation

$$x^2\frac{d^2y}{dx^2} + 6x\frac{dy}{dx} + 6y = 0$$

Try $y = x^r$: $x^2 r(r-1)x^{r-2} + 6xrx^{r-1} + 6x^r = 0$ r(r-1) + 6r + 6 = 0 $r^{2} + 5r + 6 = 0$ (r+3)(r+2) = 0 r = -2, -3 $y = c_{1}x^{-2} + c_{2}x^{-3}$

7. (15 points) Consider the initial value problem

$$2\frac{d^2y}{dt^2} + 8\frac{dy}{dt} + 26y = 0$$
 with $y(0) = 2$ and $\frac{dy}{dt}(0) = -1$

a. (8 pts) Find the general solution of the differential equation.

Try $y = e^{rt}$: $2r^2 + 8r + 26 = 0$ $r = \frac{-8 \pm \sqrt{64 - 208}}{4} = \frac{-8 \pm 12i}{4} = -2 \pm 3i$ General solution: $y = c_1 e^{-2t} \cos(3t) + c_2 e^{-2t} \sin(3t)$

b. (7 pts) Find the solution satisfying the initial conditions.

$$y = c_1 e^{-2t} \cos(3t) + c_2 e^{-2t} \sin(3t)$$

$$\frac{dy}{dt} = c_1 [-2e^{-2t} \cos(3t) - 3e^{-2t} \sin(3t)] + c_2 [-2e^{-2t} \sin(3t) + 3e^{-2t} \cos(3t)]$$

$$y(0) = c_1 = 2$$

$$\frac{dy}{dt}(0) = c_1 [-2] + c_2 [3] = -1 \qquad 3c_2 = -1 + 2c_1 == 3 \qquad c_2 = 1$$

$$y = 2e^{-2t} \cos(3t) + e^{-2t} \sin(3t)$$

8. (5 points) The solution of an initial value problem of the form

 $\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0 \quad \text{with} \quad y(0) = 2 \quad \text{and} \quad \frac{dy}{dt}(0) = 1$

is graphed below.

What can you say about the signs and relative sizes of the coefficients, b and k?

Since it oscillates, there are sines and cosines. Since it is damped, there are exponentials with negative powers.

 $v = c_1 e^{\alpha t} \sin(\beta t) + c_2 e^{\alpha t} \cos(\beta t)$ with $\alpha < 0$

The complex roots are $r = \alpha \pm i\beta = \frac{-b \pm \sqrt{b^2 - 4k}}{2}$

To have $\alpha < 0$, we need b > 0.

To have complex roots, we need $4k > b^2$.