Name \qquad
\qquad
MATH 308
Section 511

Spring 2009
P. Yasskin

1	$/ 20$	4	$/ 10$
2	$/ 20$	5	$/ 20$
3	$/ 10$	6	$/ 20$
Total			$/ 100$

1. (20 points) Consider the second order non-homogeneous differential equation

$$
y^{\prime \prime}+5 y^{\prime}+4 y=6 e^{-x}+8 x^{2}+3 .
$$

a. Find two solutions of the homogeneous differential equation $y^{\prime \prime}+5 y^{\prime}+4 y=0$.

Verify they are linearly independent. Give the general homogeneous solution.
$y=e^{r x} \quad r^{2}+5 r+4=0 \quad(r+1)(r+4)=0 \quad r=-1,-4$

Two homogeneous solutions are	$y_{1}=e^{-x}$	$y_{2}=e^{-4 x}$

Assume $\quad a y_{1}+b y_{2}=0 \quad a e^{-x}+b e^{-4 x}=0 \quad$ for all x.

$$
\begin{aligned}
& x=0: \quad a+b=0 \quad \Rightarrow \quad b=-a \text { and } a\left(e-e^{4}\right)=0 \quad \Rightarrow \quad a=0, b=0 \\
& x=-1: \quad a e+b e^{4}=0 \quad \\
& \text { OR } \quad W=\left|\begin{array}{cc}
e^{-x} & e^{-4 x} \\
-e^{-x} & -4 e^{-4 x}
\end{array}\right|=-4 e^{-5 x}+e^{-5 x}=-3 e^{-5 x} \neq 0
\end{aligned}
$$

So y_{1} and y_{2} are linearly independent.
The general homogemneous solution is $y_{h}=c_{1} e^{-x}+c_{2} e^{-4 x}$.
b. Use undetermined coefficients to find a particular non-homogeneous solution.
$y_{p}=A x e^{-x}+B x^{2}+C x+D \quad$ The x is needed on the first term because $y_{1}=e^{-x}$.
$y_{p}^{\prime}=A e^{-x}-A x e^{-x}+2 B x+C \quad y_{p}^{\prime \prime}=-2 A e^{-x}+A x e^{-x}+2 B$
$y_{p}^{\prime \prime}+5 y_{p}^{\prime}+4 y_{p}=6 e^{-x}+8 x^{2}+3 \quad \Rightarrow$
$\left(-2 A e^{-x}+A x e^{-x}+2 B\right)+5\left(A e^{-x}-A x e^{-x}+2 B x+C\right)+4\left(A x e^{-x}+B x^{2}+C x+D\right)=6 e^{-x}+8 x^{2}+3$
$x e^{-x}(A-5 A+4 A)+e^{-x}(-2 A+5 A)+x^{2}(4 B)+x(10 B+4 C)+1(2 B+5 C+4 D)=6 e^{-x}+8 x^{2}+3$
$e^{-x}(3 A)+x^{2}(4 B)+x(10 B+4 C)+1(2 B+5 C+4 D)=6 e^{-x}+8 x^{2}+3$
$3 A=6 \quad 4 B=8 \quad 10 B+4 C=0 \quad 2 B+5 C+4 D=3$
$\begin{array}{lll}A=2 & B=2 & C=-5 \\ y_{p}=2 x e^{-x}+2 x^{2}-5 x+6 & D=6\end{array}$
c. Find the non-homogeneous solution satisfying the initial conditions: $\quad y(0)=6 \quad y^{\prime}(0)=3$.

$$
\begin{array}{ll}
y=y_{h}+y_{p}=c_{1} e^{-x}+c_{2} e^{-4 x}+2 x e^{-x}+2 x^{2}-5 x+6 & y(0)=c_{1}+c_{2}+6=6 \\
y^{\prime}=-c_{1} e^{-x}-4 c_{2} e^{-4 x}+2 e^{-x}-2 x e^{-x}+4 x-5 & y^{\prime}(0)=-c_{1}-4 c_{2}+2-5=3
\end{array}
$$

Add: $\quad-3 c_{2}+3=9 \quad c_{2}=-2 \quad c_{1}=-c_{2}=2$
$y=2 e^{-x}-2 e^{-4 x}+2 x e^{-x}+2 x^{2}-5 x+6$
2. (20 points) Consider the second order homogeneous differential equation

$$
x^{2} y^{\prime \prime}+\left(-2 x-2 x^{2}\right) y^{\prime}+\left(2+2 x+x^{2}\right) y=0 .
$$

a. Verify $y_{1}=x e^{x} \quad$ is a solution. (Show your algebra!)

$$
\begin{aligned}
y_{1}^{\prime}= & e^{x}+x e^{x} \quad y_{1}^{\prime \prime}=2 e^{x}+x e^{x} \\
x^{2} y_{1}^{\prime \prime} & +\left(-2 x-2 x^{2}\right) y_{1}^{\prime}+\left(2+2 x+x^{2}\right) y_{1}=x^{2}\left(2 e^{x}+x e^{x}\right)+\left(-2 x-2 x^{2}\right)\left(e^{x}+x e^{x}\right)+\left(2+2 x+x^{2}\right)\left(x e^{x}\right. \\
& =\left[x^{2}(2+x)+\left(-2 x-2 x^{2}\right)(1+x)+\left(2+2 x+x^{2}\right) x\right] e^{x} \\
& =\left[\left(2 x^{2}+x^{3}\right)+\left(-2 x-2 x^{2}\right)+\left(-2 x^{2}-2 x^{3}\right)+\left(2 x+2 x^{2}+x^{3}\right)\right] e^{x}=0
\end{aligned}
$$

b. Use reduction of order (similar to variation of parameters) to find a second solution.
(Be careful with your algebra. Nearly everything should cancel.)

$$
\begin{aligned}
& y_{2}=v x e^{x} \quad y_{2}^{\prime}=v^{\prime} x e^{x}+v\left(e^{x}+x e^{x}\right) \quad y_{2}^{\prime \prime}=v^{\prime \prime} x e^{x}+2 v^{\prime}\left(e^{x}+x e^{x}\right)+v\left(2 e^{x}+x e^{x}\right) \\
& x^{2} y_{2}^{\prime \prime}+\left(-2 x-2 x^{2}\right) y_{2}^{\prime}+\left(2+2 x+x^{2}\right) y_{2}=0 \\
& x^{2}\left[v^{\prime \prime} x e^{x}+2 v^{\prime}\left(e^{x}+x e^{x}\right)+v\left(2 e^{x}+x e^{x}\right)\right]+\left(-2 x-2 x^{2}\right)\left[v^{\prime} x e^{x}+v\left(e^{x}+x e^{x}\right)\right]+\left(2+2 x+x^{2}\right)\left[v x e^{x}\right]=
\end{aligned}
$$

Divide by e^{x} and start expanding:

$$
v^{\prime \prime} x^{3}+2 v^{\prime}(1+x) x^{2}+v(2+x) x^{2}+v^{\prime} x\left(-2 x-2 x^{2}\right)+v(1+x)\left(-2 x-2 x^{2}\right)+v x\left(2+2 x+x^{2}\right)=0
$$

Group terms by power of v :
$v^{\prime \prime}\left[x^{3}\right]+v^{\prime}\left[2(1+x) x^{2}+x\left(-2 x-2 x^{2}\right)\right]+v\left[(2+x) x^{2}+(1+x)\left(-2 x-2 x^{2}\right)+x\left(2+2 x+x^{2}\right)\right]=0$
Expand:
$v^{\prime \prime}\left[x^{3}\right]+v^{\prime}[0]+v[0]=0$
So $\quad v^{\prime \prime}=0 \quad v^{\prime}=C_{1} \quad v=C_{1} x+C_{2}$
$y_{2}=v x e^{x}=\left(C_{1} x+C_{2}\right) x e^{x}=C_{1} x^{2} e^{x}+C_{2} x e^{x}$
We set $C_{2}=0$ because $x e^{x}$ reproduces the first solution.
We set $C_{1}=1$ because we only need one solution.
$y_{2}=x^{2} e^{x}$
3. (10 points) Consider the mass-spring-piston system shown in the figure.

The masses are $m_{1}=6 \mathrm{~kg}$ and $m_{2}=8 \mathrm{~kg}$.
The spring constants are $k_{1}=3 \mathrm{~N} / \mathrm{m}$ and $k_{2}=5 \mathrm{~N} / \mathrm{m}$.
The piston pulls in with a force proportional to the velocity with which it is expanding or pushes out with a force proportional to the velocity with which it is contracting with a proportionality constant which is the drag coefficient of $b=4 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}$.
Initially, mass m_{1} is moved 2 m to the right and given a velocity of $5 \mathrm{~m} / \mathrm{sec}$ to the left, while mass m_{2} is moved 4 m to the left and given a velocity of $3 \mathrm{~m} / \mathrm{sec}$ to the right.
Let $x(t)$ be the displacement of m_{1} from it's rest position measured positive to the right.
Let $y(t)$ be the displacement of m_{2} from it's rest position measured positive to the right.
Set up second order differential equations and initial conditions for x and y.
Do not solve the equations.
The motion of m_{1} is given by:

$$
m_{1} x^{\prime \prime}=-k_{1} x+b\left(y^{\prime}-x^{\prime}\right) \quad \text { or } \quad 6 x^{\prime \prime}=-3 x+4\left(y^{\prime}-x^{\prime}\right)
$$

Here, the coefficient of $k_{1} x$ is negative because when m_{1} is to the right of its rest position, $(x>0)$ the spring is stretched and pulls to the left.
Similarly, the coefficient of $b\left(y^{\prime}-x^{\prime}\right)$ is positive because when m_{2} is moving to the right faster than $m_{1},\left(y^{\prime}-x^{\prime}>0\right)$ the piston is expanding and the force on m_{1} is to the right.

The motion of m_{2} is given by:

$$
m_{2} y^{\prime \prime}=-k_{2} y-b\left(y^{\prime}-x^{\prime}\right) \quad \text { or } \quad 8 y^{\prime \prime}=-5 y-4\left(y^{\prime}-x^{\prime}\right)
$$

Here, the coefficient of $k_{2} y$ is negative because when m_{2} is to the right of its rest position, $(y>0)$ the spring is compressed and pushes to the left.
The coefficient of $b\left(y^{\prime}-x^{\prime}\right)$ is negative because when m_{2} is moving to the right faster than $m_{1},\left(y^{\prime}-x^{\prime}>0\right)$ the piston is expanding and the force on m_{2} is to the left.

The initial conditions are:

$$
\begin{array}{|llll}
\hline x(0)=2 & x^{\prime}(0)=-5 & y(0)=-4 & y^{\prime}(0)=3 \\
\hline
\end{array}
$$

4. (10 points) Consider the mass-spring-piston system shown in the figure.

The masses are $m_{1}=1 \mathrm{~kg}$ and $m_{2}=1 \mathrm{~kg}$. The spring constants is $k=7 \mathrm{~N} / \mathrm{m}$. The drag coefficient for the pistons are $b_{1}=5 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}$ and $b_{2}=6 \mathrm{~N} \cdot \mathrm{sec} / \mathrm{m}$.
Each piston pulls in with a force proportional to the velocity with which it is expanding or pushes out with a force proportional to the velocity with which it is contracting. Initially, mass m_{1} is moved 1 m to the right and given a velocity of $2 \mathrm{~m} / \mathrm{sec}$ to the right, while mass m_{2} is moved 3 m to the left and given a velocity of $4 \mathrm{~m} / \mathrm{sec}$ to the left.
Let $x(t)$ be the displacement of m_{1} from it's rest position measured positive to the right.
Let $y(t)$ be the displacement of m_{2} from it's rest position measured positive to the right.
The second order differential equations and initial conditions for x and y are

$$
\begin{array}{llll|}
\qquad m_{1} x^{\prime \prime}=-b_{1} x^{\prime}+k(y-x) & \text { or } & x^{\prime \prime}=-5 x^{\prime}+7(y-x) &
\end{array} \begin{array}{ll}
x(0)=1 & x^{\prime}(0)=2 \\
\qquad m_{2} y^{\prime \prime}=-b_{2} y^{\prime}-k(y-x) & \text { or } \\
& y^{\prime \prime}=-6 y^{\prime}-7(y-x) \\
\hline y(0)=-3 & y^{\prime}(0)=-4 \\
\text { Let } p=x^{\prime} & \text { and } q=y^{\prime} . \\
\text { Set up first order differential equations } \vec{x}^{\prime}=A \vec{x} \text { for } \vec{x}=\left(\begin{array}{c}
x \\
p \\
y \\
q
\end{array}\right) . \\
\text { and initial conditions for } \vec{x}(0) . & \\
\text { Do not solve the equations. } &
\end{array}
$$

$$
\begin{aligned}
\vec{x}^{\prime} & =\left(\begin{array}{c}
x^{\prime} \\
p^{\prime} \\
y^{\prime} \\
q^{\prime}
\end{array}\right)=\left(\begin{array}{c}
p \\
x^{\prime \prime} \\
q \\
y^{\prime \prime}
\end{array}\right)=\left(\begin{array}{c}
p \\
-5 x^{\prime}+7(y-x) \\
q \\
-6 y^{\prime}-7(y-x)
\end{array}\right)=\left(\begin{array}{c}
p \\
-5 p+7(y-x) \\
q \\
-6 q-7(y-x)
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-7 & -5 & 7 & 0 \\
0 & 0 & 0 & 1 \\
7 & 0 & -7 & -6
\end{array}\right)\left(\begin{array}{l}
x \\
p \\
y \\
q
\end{array}\right)=A \vec{x} \quad \text { where } \quad A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-7 & -5 & 7 & 0 \\
0 & 0 & 0 & 1 \\
7 & 0 & -7 & -6
\end{array}\right)
\end{aligned}
$$

$$
\vec{x}(0)=\left(\begin{array}{c}
x(0) \\
p(0) \\
y(0) \\
q(0)
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
-3 \\
-4
\end{array}\right)
$$

5. (20 points) Consider the first order differential equations $\vec{x}^{\prime}=A \vec{x}$
where $\vec{x}=\left(\begin{array}{l}x \\ p \\ y \\ q\end{array}\right)$ and $A=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & -3\end{array}\right)$.
Find the eigenvalues and eigenvectors of A.
Then find the general solution of the differential equation. (Vector form is OK.)
HINT: Two of the eigenvalues and eigenvectors are:
$r=-2 \quad \vec{u}_{-2}=\left(\begin{array}{c}1 \\ -2 \\ -1 \\ 2\end{array}\right) \quad r=-3 \quad \vec{u}_{-3}=\left(\begin{array}{c}-1 \\ 3 \\ -1 \\ 3\end{array}\right)$
$\operatorname{det}(A-r \mathbf{1})=\left|\begin{array}{cccc}-r & 1 & 0 & 0 \\ -1 & -3-r & 1 & 0 \\ 0 & 0 & -r & 1 \\ 1 & 0 & -1 & -3-r\end{array}\right|=r^{4}+6 r^{3}+11 r^{2}+6 r=r(r+1)(r+2)(r+3)$
$r=0:$
$\left(\begin{array}{cccc|c}0 & 1 & 0 & 0 & 0 \\ -1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & -3 & 0\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{cccc|c}1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -0 & 0\end{array}\right) \quad \Rightarrow \quad \vec{u}_{0}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$
$r=-1$:
$\left(\begin{array}{cccc|c}1 & 1 & 0 & 0 & 0 \\ -1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & -1 & -2 & 0\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{cccc|c}1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \quad \Rightarrow \quad \vec{u}_{-1}=\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)$
$\vec{x}=c_{0} \vec{u}_{0}+c_{1} e^{-t} \vec{u}_{-1}+c_{2} e^{-2 t} \vec{u}_{-2}+c_{3} e^{-3 t} \vec{u}_{-3}$
Not required:
$x=c_{0}+c_{1} e^{-t}+c_{2} e^{-2 t}-c_{3} e^{-3 t}$
$p=\quad-c_{1} e^{-t}-2 c_{2} e^{-2 t}+3 c_{3} e^{-3 t}$
$y=c_{0}+c_{1} e^{-t}-c_{2} e^{-2 t}-c_{3} e^{-3 t}$
$q=\quad-c_{1} e^{-t}+2 c_{2} e^{-2 t}+3 c_{3} e^{-3 t}$
6. (20 points) Consider the first order non-homogeneous system of differential equations
$\vec{x}^{\prime}=A \vec{x}+\vec{f}$ where $\vec{x}=\left(\begin{array}{c}x \\ p \\ y \\ q\end{array}\right)$ and $A=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \\ 1 & 3 & -1 & 0\end{array}\right)$ and $\vec{f}=\left(\begin{array}{c}3 \\ -t \\ 0 \\ t\end{array}\right)$.
The general solution of the corresponding homogeneous differential equation is
$\vec{x}=c_{0} \vec{u}_{0}+c_{1} e^{-t} \vec{u}_{-1}+c_{2} e^{-2 t} \vec{u}_{-2}+c_{3} e^{3 t} \vec{u}_{3} \quad$ where
$\vec{u}_{0}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right) \quad u_{-1}=\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right) \quad \vec{u}_{-2}=\left(\begin{array}{c}1 \\ -2 \\ -1 \\ 2\end{array}\right) \quad \vec{u}_{3}=\left(\begin{array}{l}1 \\ 3 \\ 1 \\ 3\end{array}\right)$
Use undetermined coefficients to determine a particular solution.
HINTS: Look for a solution of the form $\vec{x}_{p}=\vec{a}+t \vec{b}$.
First solve for \vec{b} and keep the arbitrary constant. Then solve for \vec{a}.
If you have time check your answer in the differential equation.
Let $\vec{a}=\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right), \quad \vec{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right), \quad \vec{c}=\left(\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array}\right) \quad$ and $\quad \vec{d}=\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 1\end{array}\right)$
We substitute into the non-homogeneous equation:
$\vec{x}_{p}^{\prime}=\vec{b} \quad=\quad A \vec{x}_{p}+\vec{f}=A \vec{a}+t A \vec{b}+\vec{c}+\overrightarrow{t d}$
We equate coefficients of t and 1 :
$0=A \vec{b}+\vec{d}$ and $\vec{b}=A \vec{a}+\vec{c}$
We solve $A \vec{b}=-\vec{d}$ for \vec{b} and then $A \vec{a}=\vec{b}-\vec{c}$ for \vec{a} :

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 3 & -1 & 0 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 3 & -1 & 0 & -1
\end{array}\right) \Rightarrow\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 3 & 0 & 3 & 0
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{cccc|c}
1 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \Rightarrow \vec{b}=\left(\begin{array}{c}
b_{1}-b_{3}=-1 \\
b_{2}=0 \\
b_{4}=0 \\
0=0
\end{array} \quad \Rightarrow \quad \begin{array}{c}
s-1 \\
0 \\
s \\
0
\end{array}\right) \\
& \left(\begin{array}{cccc|c}
0 & 1 & 0 & 0 & s-4 \\
-1 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & s \\
1 & 3 & -1 & 0 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 0 & 0 & s-4 \\
0 & 0 & 0 & 1 & s \\
1 & 3 & -1 & 0 & 0
\end{array}\right) \Rightarrow\left(\begin{array}{cccc|c}
1 & 0 & -1 & -3 & 0 \\
0 & 1 & 0 & 0 & s-4 \\
0 & 0 & 0 & 1 & s \\
0 & 3 & 0 & 3 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow\left(\begin{array}{cccc|c}
1 & 0 & -1 & 0 & 3 s \\
0 & 1 & 0 & 0 & s-4 \\
0 & 0 & 0 & 1 & s \\
0 & 0 & 0 & 0 & -6 s+12
\end{array}\right) \Rightarrow \begin{array}{c}
a_{1}-a_{3}=3 s \\
a_{2}=s-4 \\
a_{4}=s \\
0=-6 s+12
\end{array} \Rightarrow s=2 \\
\vec{a}=\left(\begin{array}{c}
1 \\
0 \\
-6 \\
r \\
2
\end{array}\right) \Rightarrow \vec{b}=\left(\begin{array}{c}
r+6 \\
2 \\
0
\end{array}\right) \Rightarrow \vec{x}_{p}=\vec{a}+t \vec{b}=\left(\begin{array}{l}
1 \\
-2 \\
r \\
0
\end{array}\right)+t\left(\begin{array}{c}
\\
2 \\
2 \\
0
\end{array}\right) \quad \text { Pick any } r .
\end{gathered}
$$

Check:

$$
\begin{aligned}
& \vec{x}_{p}^{\prime}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right) \\
& A \vec{x}_{p}+\vec{f}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 \\
1 & 3 & -1 & 0
\end{array}\right)\left(\left(\begin{array}{c}
r+6 \\
-2 \\
r \\
2
\end{array}\right)+t\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right)\right)+\left(\begin{array}{c}
3 \\
-t \\
0 \\
t
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right)
\end{aligned}
$$

