Name_			

ID_____

MATH 311	Exam 1	Fall 2000
Section 502		P. Yasskin

1	/10	6	/10
2	/10	7	/15
5	/10	8	/15
So	cantron		/30

1. (10 points) Find the inverse of
$$A = \begin{pmatrix} -1 & 0 & 3 \\ 0 & 1 & 4 \\ 1 & 1 & 0 \end{pmatrix}$$
.

Use it to solve $XA = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix}$.

2. (10 points) Consider the polynomials

$$p_1(x) = 1 - x^2$$

 $p_2(x) = 2 - x - x^2$
 $p_3(x) = 1 - x$

and the vector space

W =**Span** $(p_1, p_2, p_3).$

Find a subset of $\{p_1, p_2, p_3\}$ which is a basis for *W*. Prove it spans *W* and is linearly independent.

3. Consider the vector space P_3 , the set of polynomials of degree 3 or less?

• (5 points) Scantron #1 Which of the following is NOT a subspace of P_3 ?

a. $A = \{ p \in P_3 | p(0) = 0 \}$ **b.** $B = \{ p \in P_3 | p(1) = 0 \}$ **c.** $C = \{ p \in P_3 | p(0) = p(1) \}$ **d.** $D = \{ p \in P_3 | p(0) + p(1) = 0 \}$ **e.** $E = \{ p \in P_3 | p(0) = 1 \}$

4. Consider the vector space \mathbf{R}^+ of all positive real numbers with the operations of Vector Addition: $x \oplus y = xy$ (real number addition) Scalar Multiplication: $\alpha \circ x = x^{\alpha}$ (real number exponentiation)

• (5 points) Scantron #2 Translate the vector identity

 $0 \circ x = \vec{0}$

into ordinary arithmetic.

a. $1^{x} = 1$ **b.** $x^{0} = 1$ **c.** $0^{x} = 0$ **d.** $x^{1} = x$ **e.** $0^{x} = 1$ 5. Consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^4$ given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.

• (10 points) Solve
$$L(\vec{x}) = \begin{pmatrix} 2 \\ -1 \\ 2 \\ 4 \end{pmatrix}$$
.

- (5 points) Scantron #3 Describe the solution set:
 - a. No Solutions
 - **b**. Unique Solution (Point in \mathbf{R}^3)
 - c. ∞ -Many Solutions (Line in \mathbb{R}^3)
 - **d**. ∞ -Many Solutions (Plane in \mathbb{R}^3)
 - e. ∞ -Many Solutions (All of \mathbb{R}^3)
- (5 points) Scantron #4 Is L a one-to-one function?
 - a. Yes
 - **b**. No

6. Again consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^4$ given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.

• (10 points) Solve
$$L(\vec{x}) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
.

- (5 points) Scantron #5 Describe the solution set:
 - a. No Solutions
 - **b**. Unique Solution (Point in **R**³)
 - c. ∞ -Many Solutions (Line in \mathbb{R}^3)
 - d. ∞ -Many Solutions (Plane in \mathbb{R}^3)
 - e. ∞ -Many Solutions (All of \mathbb{R}^3)
- (5 points) Scantron #6 Is L an onto function?
 - a. Yes
 - **b**. No

- 7. Again consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^4$ given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.
 - (5 points) Find Ker(L), the kernel (or null space) of L.

- (5 points) Give a basis for Ker(L). (No proof)
- (5 points) What is the dimension of Ker(L)? (No proof)

- 8. Again consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^4$ given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.
 - (5 points) Find Im(L), the image (or range) of L.

• (5 points) Give a basis for Im(L). (No proof)

• (5 points) What is the dimension of Im(L)? (No proof)