Name \qquad ID \qquad
MATH 311
Exam 1
Section 502

Fall 2000
P. Yasskin

1	$/ 10$	6	$/ 10$
2	$/ 10$	7	$/ 15$
5	$/ 10$	8	$/ 15$
Scantron		$/ 30$	

1. (10 points) Find the inverse of $A=\left(\begin{array}{ccc}-1 & 0 & 3 \\ 0 & 1 & 4 \\ 1 & 1 & 0\end{array}\right)$.

Use it to solve $X A=\left(\begin{array}{lll}0 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 0\end{array}\right)$.
2. (10 points) Consider the polynomials

$$
\begin{aligned}
& p_{1}(x)=1-x^{2} \\
& p_{2}(x)=2-x-x^{2} \\
& p_{3}(x)=1-x
\end{aligned}
$$

and the vector space

$$
W=\operatorname{Span}\left(p_{1}, p_{2}, p_{3}\right)
$$

Find a subset of $\left\{p_{1}, p_{2}, p_{3}\right\}$ which is a basis for W. Prove it spans W and is linearly independent.
3. Consider the vector space P_{3}, the set of polynomials of degree 3 or less?

- (5 points) Scantron \#1 Which of the following is NOT a subspace of P_{3} ?
a. $A=\left\{p \in P_{3} \mid p(0)=0\right\}$
b. $B=\left\{p \in P_{3} \mid p(1)=0\right\}$
c. $C=\left\{p \in P_{3} \mid p(0)=p(1)\right\}$
d. $D=\left\{p \in P_{3} \mid p(0)+p(1)=0 \quad\right\}$
e. $E=\left\{p \in P_{3} \mid p(0)=1\right\}$

4. Consider the vector space \mathbf{R}^{+}of all positive real numbers with the operations of Vector Addition: $\quad x \oplus y=x y \quad$ (real number addition)
Scalar Multiplication: $\quad \alpha \circ x=x^{\alpha} \quad$ (real number exponentiation)

- (5 points) Scantron \#2 Translate the vector identity

$$
0 \circ x=\overrightarrow{0}
$$

into ordinary arithmetic.
a. $1^{x}=1$
b. $x^{0}=1$
c. $0^{x}=0$
d. $x^{1}=x$
e. $0^{x}=1$
5. Consider the linear map $L: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ given by $L(\vec{x})=A \vec{x} \quad$ where $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4\end{array}\right)$.

- (10 points) Solve $L(\vec{x})=\left(\begin{array}{c}2 \\ -1 \\ 2 \\ 4\end{array}\right)$.
- (5 points) Scantron \#3 Describe the solution set:
a. No Solutions
b. Unique Solution (Point in \mathbf{R}^{3})
c. ∞-Many Solutions (Line in \mathbf{R}^{3})
d. ∞-Many Solutions (Plane in \mathbf{R}^{3})
e. ∞-Many Solutions (All of \mathbf{R}^{3})
- (5 points) Scantron \#4 Is L a one-to-one function?
a. Yes
b. No

6. Again consider the linear map $L: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ given by $L(\vec{x})=A \vec{x}$ where $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4\end{array}\right)$.

- (10 points) Solve $L(\vec{x})=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.
- (5 points) Scantron \#5 Describe the solution set:
a. No Solutions
b. Unique Solution (Point in \mathbf{R}^{3})
c. ∞-Many Solutions (Line in \mathbf{R}^{3})
d. ∞-Many Solutions (Plane in \mathbf{R}^{3})
e. ∞-Many Solutions (All of \mathbf{R}^{3})
- (5 points) Scantron \#6 Is L an onto function?
a. Yes
b. No

7. Again consider the linear map $L: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ given by $L(\vec{x})=A \vec{x}$ where $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4\end{array}\right)$.

- (5 points) Find $\operatorname{Ker}(L)$, the kernel (or null space) of L.
- (5 points) Give a basis for $\operatorname{Ker}(L)$. (No proof)
- (5 points) What is the dimension of $\operatorname{Ker}(L)$? (No proof)

8. Again consider the linear map $L: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$ given by $L(\vec{x})=A \vec{x}$ where $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4\end{array}\right)$.

- (5 points) Find $\operatorname{Im}(L)$, the image (or range) of L.
- (5 points) Give a basis for $\operatorname{Im}(L)$. (No proof)
- (5 points) What is the dimension of $\operatorname{Im}(L)$? (No proof)

