MATH 311 Exam 1 Fall 2000 Section 502 Solutions P. Yasskin

1. (10 points) Find the inverse of $A = \begin{pmatrix} -1 & 0 & 3 \\ 0 & 1 & 4 \\ 1 & 1 & 0 \end{pmatrix}$.

$$\begin{pmatrix} -1 & 0 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 4 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{pmatrix} R3$$

$$\begin{pmatrix} 1 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 4 & | & 0 & 1 & 0 \\ -1 & 0 & 3 & | & 1 & 0 & 0 \end{pmatrix} R3 + R1$$

$$\begin{pmatrix} 1 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 4 & | & 0 & 1 & 0 \\ -1 & 0 & 3 & | & 1 & 0 & 0 \end{pmatrix} R3 + R1$$

$$\begin{pmatrix} 1 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & 1 & 4 & | & 0 & 1 & 0 \\ 0 & 1 & 3 & | & 1 & 0 & 1 \end{pmatrix} R1 - R2$$

$$\begin{pmatrix} 1 & 1 & 0 & | & -4 & 3 & -3 \\ 0 & 1 & 4 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & -4 & 3 & -3 \\ 0 & 1 & 0 & | & 4 & -3 & 4 \\ 0 & 0 & 1 & | & -1 & 1 & -1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -4 & 3 & -3 \\ 4 & -3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Use it to solve
$$XA = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$
.

$$XA = B \qquad \Rightarrow \qquad X = BA^{-1} = \left(\begin{array}{ccc} 0 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 0 \end{array}\right) \left(\begin{array}{cccc} -4 & 3 & -3 \\ 4 & -3 & 4 \\ -1 & 1 & -1 \end{array}\right) = \left(\begin{array}{cccc} -2 & 2 & -2 \\ -4 & 3 & -2 \\ 8 & -6 & 8 \end{array}\right)$$

2. (10 points) Consider the polynomials

$$p_1(x) = 1 - x^2$$

 $p_2(x) = 2 - x - x^2$
 $p_3(x) = 1 - x$

and the vector space

$$W = \text{Span}(p_1, p_2, p_3).$$

Find a subset of $\{p_1, p_2, p_3\}$ which is a basis for W. Prove it spans W and is linearly independent.

$$ap_{1} + bp_{2} + cp_{3} = 0 \implies a(1 - x^{2}) + b(2 - x - x^{2}) + c(1 - x) = 0$$

$$\implies -a - b = 0 \qquad -b - c = 0 \qquad a + 2b + c = 0$$

$$\begin{pmatrix} -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 2 & 1 & 0 \end{pmatrix} -R1 \qquad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} R1 - R2 \qquad \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} R1 - R2 \qquad a = t$$

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} R3 - R2 \qquad c = t$$

Let t = 1. Then

$$p_1 - p_2 + p_3 = 0$$
 or $p_3 = -p_1 + p_2$

Claim the basis is $\{p_1, p_2\}$. They span because

$$ap_1 + bp_2 + cp_3 = ap_1 + bp_2 + c(-p_1 + p_2) = (a - c)p_1 + (b + c)p_2$$

They are linearly independent because

$$ap_1 + bp_2 = 0$$
 \Rightarrow $a(1-x^2) + b(2-x-x^2) = 0$
 \Rightarrow $-a-b = 0$ $-b = 0$ $a+2b = 0$
 \Rightarrow $b = 0$ & $a = 0$

- **3**. Consider the vector space P_3 , the set of polynomials of degree 3 or less?
 - (5 points) Scantron #1 Which of the following is NOT a subspace of P_3 ?
 - **a.** $A = \{ p \in P_3 \mid p(0) = 0 \}$
 - **b.** $B = \{ p \in P_3 \mid p(1) = 0 \}$
 - **c.** $C = \{ p \in P_3 \mid p(0) = p(1) \}$
 - **d.** $D = \{ p \in P_3 \mid p(0) + p(1) = 0 \}$
 - **e.** $E = \{ p \in P_3 \mid p(0) = 1 \}$ Correct

E is not a subspace because if $p, q \in E$ then p(0) = 1 and q(0) = 1. So (p + q)(0) = 2 and $p + q \notin E$.

4. Consider the vector space R+ of all positive real numbers with the operations of

Vector Addition:

$$x \oplus y = xy$$

(real number addition)

Scalar Multiplication:

$$\alpha \circ x = x^{\alpha}$$

(real number exponentiation)

• (5 points) Scantron #2 Translate the vector identity

$$0 \circ x = \overrightarrow{0}$$

into ordinary arithmetic.

a.
$$1^x = 1$$

b.
$$x^0 = 1$$

Correct

c.
$$0^x = 0$$

d.
$$x^1 = x$$

e.
$$0^x = 1$$

$$0 \circ x = x^0$$
 and $\vec{0} = 1$. So $x^0 = 1$.

- **5.** Consider the linear map $L: \mathbf{R}^3 \to \mathbf{R}^4$ given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.
 - (10 points) Solve $L(\vec{x}) = \begin{pmatrix} 2 \\ -1 \\ 2 \\ 4 \end{pmatrix}$.

$$\begin{pmatrix}
1 & -1 & 0 & 2 \\
0 & 1 & 2 & -1 \\
2 & 0 & 4 & 2 \\
3 & -1 & 4 & 4
\end{pmatrix}
R3 - 2R1$$

$$\begin{pmatrix}
1 & -1 & 0 & 2 \\
0 & 1 & 2 & -1 \\
0 & 2 & 4 & -2 \\
0 & 2 & 4 & -2
\end{pmatrix}
R1 + R2$$

$$\begin{pmatrix}
1 & 0 & 2 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 2 & 4 & -2
\end{pmatrix}$$

$$R3 - 2R2$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\Rightarrow x + 2z = 1 y + 2z = -1 \Rightarrow x = 1 - 2t y = -1 - 2t z = t$$

- (5 points) Scantron #3 Describe the solution set:
 - a. No Solutions
 - **b**. Unique Solution (Point in **R**³)
 - **c.** ∞ -Many Solutions (Line in \mathbb{R}^3) Correct There is one parameter.
 - d. ∞-Many Solutions (Plane in **R**³)
 - e. ∞-Many Solutions (All of R³)
- (5 points) Scantron #4 Is L a one-to-one function?
 - a. Yes
 - **b**. No Correct

There is more than one solution to $L(\vec{x}) = \vec{b}$.

6. Again consider the linear map
$$L: \mathbf{R}^3 \to \mathbf{R}^4$$
 given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.

• (10 points) Solve
$$L(\vec{x}) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
.

$$\begin{pmatrix}
1 & -1 & 0 & | & 1 \\
0 & 1 & 2 & | & 1 \\
2 & 0 & 4 & | & 1 \\
3 & -1 & 4 & | & 1
\end{pmatrix}
R3 - 2R1$$

$$\begin{pmatrix}
1 & -1 & 0 & | & 1 \\
0 & 1 & 2 & | & 1 \\
0 & 2 & 4 & | & -1 \\
0 & 2 & 4 & | & -2
\end{pmatrix}
R1 + R2$$

$$\begin{pmatrix}
1 & 0 & 2 & | & 1 \\
0 & 1 & 2 & | & -1 \\
0 & 0 & 0 & | & -3 \\
0 & 0 & 0 & | & -4
\end{pmatrix}$$

- (5 points) Scantron #5 Describe the solution set:
 - a. No Solutions Correct
 - **b**. Unique Solution (Point in **R**³)
 - c. ∞-Many Solutions (Line in R³)
 - d. ∞-Many Solutions (Plane in R³)
 - e. ∞-Many Solutions (All of R³)
- (5 points) Scantron #6 Is L an onto function?
 - a. Yes

b. No Correct
$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 is not in the image.

7. Again consider the linear map
$$L: \mathbb{R}^3 \to \mathbb{R}^4$$
 given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.

• (5 points) Find Ker(L), the kernel (or null space) of L.

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 4 & 0 \\ 3 & -1 & 4 & 0 \end{pmatrix} R3 - 2R1
\Rightarrow \begin{cases} x + 2z = 0 \\ y + 2z = 0 \end{cases} \Rightarrow \begin{cases} x = -2t \\ z = t \end{cases} \Rightarrow Ker(L) = \begin{cases} \begin{pmatrix} -2t \\ -2t \\ t \end{pmatrix} \end{cases}$$

• (5 points) Give a basis for
$$Ker(L)$$
. (No proof)
$$\left\{ \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix} \right\}$$

• (5 points) What is the dimension of Ker(L)? (No proof) $\dim Ker(L) = 1$

8. Again consider the linear map
$$L: \mathbf{R}^3 \to \mathbf{R}^4$$
 given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.

• (5 points) Find Im(L), the image (or range) of L.

$$L(\vec{x}) = A\vec{x} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ y + 2z \\ 2x + 4z \\ 3x - y + 4z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \end{pmatrix} + z \begin{pmatrix} 0 \\ 2 \\ 4 \\ 4 \end{pmatrix}$$

$$Im(L) = \{L(\vec{x})\} = Span \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 4 \\ 4 \end{pmatrix} \end{pmatrix}$$

• (5 points) Give a basis for Im(L). (No proof)

The 3 vectors span. Are they independent?

$$x \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \end{pmatrix} + z \begin{pmatrix} 0 \\ 2 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \implies \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 4 & 0 \\ 3 & -1 & 4 & 0 \end{pmatrix} \implies x = -2t$$

$$\Rightarrow y = -2t$$

$$z = t$$

as in Problem 7. So they are not independent. Throw out the third vector and the first two are independent.

Basis is
$$\left\{ \begin{pmatrix} 1\\0\\2\\3 \end{pmatrix}, \begin{pmatrix} -1\\1\\0\\-1 \end{pmatrix} \right\}$$

• (5 points) What is the dimension of Im(L)? (No proof) $\dim Im(L) = 2$